529 research outputs found

    Characterization of Chilling Sensitivity of Tropical and Temperate Grasses

    Get PDF
    C16-C18 fatty acid composition of some lipids in several species of temperate and tropical grasses were measured. The fatty acid composition of phosphatidylglycerol (PG) and sulfoquinovosyl diglyceride (SQDG) indicated significant differences between temperate and tropical grasses. Especially the differences of the fatty acid composition of PG were remarkable. The unsaturated fatty acid content of PG in tropical grasses was lower than the contents in temperate grasses. These differences constantly appeared through the year. These differences were caused by the low content of polyunsaturated fatty acids, or the low contents of C18 fatty acids

    Stochastic Process Associated with Traveling Wave Solutions of the Sine-Gordon Equation

    Full text link
    Stochastic processes associated with traveling wave solutions of the sine-Gordon equation are presented. The structure of the forward Kolmogorov equation as a conservation law is essential in the construction and so is the traveling wave structure. The derived stochastic processes are analyzed numerically. An interpretation of the behaviors of the stochastic processes is given in terms of the equation of motion.Comment: 12 pages, 9 figures; corrected typo

    Exact results on the dynamics of multi-component Bose-Einstein condensate

    Full text link
    We study the time-evolution of the two dimensional multi-component Bose-Einstein condensate in an external harmonic trap with arbitrary time-dependent frequency. We show analytically that the time-evolution of the total mean-square radius of the wave-packet is determined in terms of the same solvable equation as in the case of a single-component condensate. The dynamics of the total mean-square radius is also the same for the rotating as well as the non-rotating multi-component condensate. We determine the criteria for the collapse of the condensate at a finite time. Generalizing our previous work on a single-component condensate, we show explosion-implosion duality in the multi-component condensate.Comment: Two-column 6 pages, RevTeX, no figures(v1); Added an important reference, version to appear in Physical Review A (v2

    Effects of ac-field amplitude on the dielectric susceptibility of relaxors

    Full text link
    The thermally activated flips of the local spontaneous polarization in relaxors were simulated to investigate the effects of the applied-ac-field amplitude on the dielectric susceptibility. It was observed that the susceptibility increases with increasing the amplitude at low temperatures. At high temperatures, the susceptibility experiences a plateau and then drops. The maximum in the temperature dependence of susceptibility shifts to lower temperatures when the amplitude increases. A similarity was found between the effects of the amplitude and frequency on the susceptibility.Comment: 8 pages, 7 figures, Phys. Rev. B (in July 1st

    Solutions of Gross-Pitaevskii equations beyond the hydrodynamic approximation: Application to the vortex problem

    Full text link
    We develop the multiscale technique to describe excitations of a Bose-Einstein condensate (BEC) whose characteristic scales are comparable with the healing length, thus going beyond the conventional hydrodynamical approximation. As an application of the theory we derive approximate explicit vortex and other solutions. The dynamical stability of the vortex is discussed on the basis of the mathematical framework developed here, the result being that its stability is granted at least up to times of the order of seconds, which is the condensate lifetime. Our analytical results are confirmed by the numerical simulations.Comment: To appear in Phys. Rev.

    Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3

    Full text link
    Recent neutron scattering measurements performed on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of scattering resembles a waterfall when plotted as a phonon dispersion diagram, and extends vertically from the transverse acoustic (TA) branch near 4 meV to the transverse optic (TO) branch near 9 meV. No zone center optic mode was found. We report new results from an extensive neutron scattering study of pure PZN that exhibits the same waterfall feature. We are able to model the dynamics of the waterfall using a simple coupled-mode model that assumes a strongly q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1 as one approaches the zone center. This model was motivated by the results of Burns and Dacol in 1983, who observed the formation of a randomly-oriented local polarization in PZN at temperatures far above its ferroelectric phase transition temperature. The dramatic increase in Gamma1 is believed to occur when the wavelength of the optic mode becomes comparable to the size of the small polarized micro-regions (PMR) associated with this randomly-oriented local polarization, with the consequence that longer wavelength optic modes cannot propagate and become overdamped. Below Tc=410 K, the intensity of the waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review

    Nonlinear magnetoinductive transmission lines

    Full text link
    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent capacitance. Extended numerical simulations reveal that power transmission along the array is also possible in other than the linear frequency bands, which are located close to the nonlinear resonances of a single nonlinear RLC circuit. Moreover, the effectiveness of power transmission for driving frequencies in the nonlinear bands is comparable to that in the linear band. Power transmission in the nonlinear bands occurs through the linear modes of the system, and it is closely related to the instability of a mode that is localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of Bifurcation and Chao

    Soft Phonon Anomalies in the Relaxor Ferroelectric Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3

    Full text link
    Neutron inelastic scattering measurements of the polar TO phonon mode dispersion in the cubic relaxor Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3 at 500K reveal anomalous behavior in which the optic branch appears to drop precipitously into the acoustic branch at a finite value of the momentum transfer q=0.2 inverse Angstroms, measured from the zone center. We speculate this behavior is the result of nanometer-sized polar regions in the crystal.Comment: 4 pages, 4 figure

    Nonlocal interactions prevent collapse in negative scattering length Bose-Einstein gases

    Full text link
    We study the effect of nonlocality on the collapse properties of a self-focusing Nonlinear Schr\"odinger system related to Bose-Einstein condensation problems. Using a combination of moment techniques, time dependent variational methods and numerical simulations we present evidences in support of the hypothesis that nonlocal attractively interacting condensates cannot collapse when the dominant interaction term is due to finite range interactions. Instead there apppear oscillations of the wave packet with a localized component whose size is of the order of the range of interactions. We discuss the implications of the results to collapse phenomena in negative scattering length Bose-Einstein condensates
    • 

    corecore