6,214 research outputs found
ENO-wavelet transforms for piecewise smooth functions
We have designed an adaptive essentially nonoscillatory (ENO)-wavelet transform for approximating discontinuous functions without oscillations near the discontinuities. Our approach is to apply the main idea from ENO schemes for numerical shock capturing to standard wavelet transforms. The crucial point is that the wavelet coefficients are computed without differencing function values across jumps. However, we accomplish this in a different way than in the standard ENO schemes. Whereas in the standard ENO schemes the stencils are adaptively chosen, in the ENO-wavelet transforms we adaptively change the function and use the same uniform stencils. The ENO-wavelet transform retains the essential properties and advantages of standard wavelet transforms such as concentrating the energy to the low frequencies, obtaining maximum accuracy, maintained up to the discontinuities, and having a multiresolution framework and fast algorithms, all without any edge artifacts. We have obtained a rigorous approximation error bound which shows that the error in the ENO-wavelet approximation depends only on the size of the derivative of the function away from the discontinuities. We will show some numerical examples to illustrate this error estimate
Asymptotic equivalence and adaptive estimation for robust nonparametric regression
Asymptotic equivalence theory developed in the literature so far are only for
bounded loss functions. This limits the potential applications of the theory
because many commonly used loss functions in statistical inference are
unbounded. In this paper we develop asymptotic equivalence results for robust
nonparametric regression with unbounded loss functions. The results imply that
all the Gaussian nonparametric regression procedures can be robustified in a
unified way. A key step in our equivalence argument is to bin the data and then
take the median of each bin. The asymptotic equivalence results have
significant practical implications. To illustrate the general principles of the
equivalence argument we consider two important nonparametric inference
problems: robust estimation of the regression function and the estimation of a
quadratic functional. In both cases easily implementable procedures are
constructed and are shown to enjoy simultaneously a high degree of robustness
and adaptivity. Other problems such as construction of confidence sets and
nonparametric hypothesis testing can be handled in a similar fashion.Comment: Published in at http://dx.doi.org/10.1214/08-AOS681 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Arc-Length Continuation and Multigrid Techniques for Nonlinear Elliptic Eigenvalue Problems
We investigate multi-grid methods for solving linear systems arising from arc-length continuation techniques applied to nonlinear elliptic eigenvalue problems. We find that the usual multi-grid methods diverge in the neighborhood of singular points of the solution branches. As a result, the continuation method is unable to continue past a limit point in the Bratu problem. This divergence is analyzed and a modified multi-grid algorithm has been devised based on this analysis. In principle, this new multi-grid algorithm converges for elliptic systems, arbitrarily close to singularity and has been used successfully in conjunction with arc-length continuation procedures on the model problem. In the worst situation, both the storage and the computational work are only about a factor of two more than the unmodified multi-grid methods
Law of Log Determinant of Sample Covariance Matrix and Optimal Estimation of Differential Entropy for High-Dimensional Gaussian Distributions
Differential entropy and log determinant of the covariance matrix of a
multivariate Gaussian distribution have many applications in coding,
communications, signal processing and statistical inference. In this paper we
consider in the high dimensional setting optimal estimation of the differential
entropy and the log-determinant of the covariance matrix. We first establish a
central limit theorem for the log determinant of the sample covariance matrix
in the high dimensional setting where the dimension can grow with the
sample size . An estimator of the differential entropy and the log
determinant is then considered. Optimal rate of convergence is obtained. It is
shown that in the case the estimator is asymptotically
sharp minimax. The ultra-high dimensional setting where is also
discussed.Comment: 19 page
The Importance of Broadband Provision to Knowledge Intensive Firm Location
Despite the volume of literature afforded knowledge work and innovations in information and communications technologies (ICTs), few studies have examined the importance of ICTs to knowledge industries and the impact of their availability on firm location decisions. This study will evaluate the relative importance of ICTs to knowledge intensive firm location for select US metropolitan statistical areas (MSAs). Spatial econometric estimation techniques are used to construct models from ZIP code level data that describe the relative importance of broadband to knowledge intensive industries, as defined in this study. A global model is constructed for all relevant ZIP code areas across the continental U.S and the results are compared to metropolitan specific models. In addition to demonstrating variations by metropolitan area in the relative importance of broadband provision, the results suggest that broadband deployment initiatives will have varied outcomes on knowledge intensive firm growth and the subsequent change in the industrial composition of regional economies in future years.
- âŚ