17,449 research outputs found

    Fluctuation characteristics of the TCV snowflake divertor measured with high speed visible imaging

    Get PDF
    Tangentially viewing fast camera footage of the low-field side snowflake minus divertor in TCV is analysed across a four point scan in which the proximity of the two X-points is varied systematically. The motion of structures observed in the post- processed movie shows two distinct regions of the camera frame exhibiting differing patterns. One type of motion in the outer scrape-off layer remains present throughout the scan whilst the other, apparent in the inner scrape-off layer between the two nulls, becomes increasingly significant as the X-points contract towards one another. The spatial structure of the fluctuations in both regions is shown to conform to the equilibrium magnetic field. When the X-point gap is wide the fluctuations measured in the region between the X-points show a similar structure to the fluctuations observed above the null region, remaining coherent for multiple toroidal turns of the magnetic field and indicating a physical connectivity of the fluctuations between the upstream and downstream regions. When the X-point gap is small the fluctuations in the inner scrape-off layer between the nulls are decorrelated from fluctuations upstream, indicating local production of filamentary structures. The motion of filaments in the inter-null region differs, with filaments showing a dominantly poloidal motion along magnetic flux surfaces when the X-point gap is large, compared to a dominantly radial motion across flux-surfaces when the gap is small. This demonstrates an enhancement to cross-field tranport between the nulls of the TCV low-field-side snowflake minus when the gap between the nulls is small.Comment: Accepted for publication in Plasma Physics and Controlled Fusio

    Linking anthropogenic resources to wildlife-pathogen dynamics: a review and meta-analysis

    Get PDF
    Urbanisation and agriculture cause declines for many wildlife, but some species beneļ¬t from novelresources, especially food, provided in human-dominated habitats. Resulting shifts in wildlife ecol-ogy can alter infectious disease dynamics and create opportunities for cross-species transmission,yet predicting hostā€“pathogen responses to resource provisioning is challenging. Factors enhancingtransmission, such as increased aggregation, could be offset by better host immunity due toimproved nutrition. Here, we conduct a review and meta-analysis to show that food provisioningresults in highly heterogeneous infection outcomes that depend on pathogen type and anthropo-genic food source. We also ļ¬nd empirical support for behavioural and immune mechanismsthrough which human-provided resources alter host exposure and tolerance to pathogens. Areview of recent theoretical models of resource provisioning and infection dynamics shows thatchanges in host contact rates and immunity produce strong non-linear responses in pathogen inva-sion and prevalence. By integrating results of our meta-analysis back into a theoretical frame-work, we ļ¬nd provisioning ampliļ¬es pathogen invasion under increased host aggregation andtolerance, but reduces transmission if provisioned food decreases dietary exposure to parasites.These results carry implications for wildlife disease management and highlight areas for futurework, such as how resource shifts might affect virulence evolution

    CoRoT's first seven planets: An overview

    Full text link
    The up to 150 day uninterrupted high-precision photometry of about 100000 stars - provided so far by the exoplanet channel of the CoRoT space telescope - gave a new perspective on the planet population of our galactic neighbourhood. The seven planets with very accurate parameters widen the range of known planet properties in almost any respect. Giant planets have been detected at low metallicity, rapidly rotating and active, spotted stars. CoRoT-3 populated the brown dwarf desert and closed the gap of measured physical properties between standard giant planets and very low mass stars. CoRoT extended the known range of planet masses down to 5 Earth masses and up to 21 Jupiter masses, the radii to less than 2 Earth radii and up to the most inflated hot Jupiter found so far, and the periods of planets discovered by transits to 9 days. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planet-host-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that terrestrial planets with a density close to Earth exist outside the Solar System. The detection of the secondary transit of CoRoT-1 at the 10āˆ’510^{-5}-level and the very clear detection of the 1.7 Earth radii of CoRoT-7b at 3.510āˆ’43.5 10^{-4} relative flux are promising evidence of CoRoT being able to detect even smaller, Earth sized planets.Comment: 8 pages, 19 figures and 3 table
    • ā€¦
    corecore