187 research outputs found
A General-applications Direct Global Matrix Algorithm for Rapid Seismo-acoustic Wavefield Computations
A new matrix method for rapid wave propagation modeling in generalized stratified media, which has recently been applied to numerical simulations in diverse areas of underwater acoustics, solid earth seismology, and nondestructive ultrasonic scattering is explained and illustrated. A portion of recent efforts jointly undertaken at NATOSACLANT and NORDA Numerical Modeling groups in developing, implementing, and testing a new fast general-applications wave propagation algorithm, SAFARI, formulated at SACLANT is summarized. The present general-applications SAFARI program uses a Direct Global Matrix Approach to multilayer Green's function calculation. A rapid and unconditionally stable solution is readily obtained via simple Gaussian ellimination on the resulting sparsely banded block system, precisely analogous to that arising in the Finite Element Method. The resulting gains in accuracy and computational speed allow consideration of much larger multilayered air/ocean/Earth/engineering material media models, for many more source-receiver configurations than previously possible. The validity and versatility of the SAFARI-DGM method is demonstrated by reviewing three practical examples of engineering interest, drawn from ocean acoustics, engineering seismology and ultrasonic scattering
Determining Parameters of Cool Giant Stars by Modeling Spectrophotometric and Interferometric Observations Using the SAtlas Program
Context: Optical interferometry is a powerful tool for observing the
intensity structure and angular diameter of stars. When combined with
spectroscopy and/or spectrophotometry, interferometry provides a powerful
constraint for model stellar atmospheres. Aims: The purpose of this work is to
test the robustness of the spherically symmetric version of the Atlas stellar
atmosphere program, SAtlas, using interferometric and spectrophotometric
observations. Methods: Cubes (three dimensional grids) of model stellar
atmospheres, with dimensions of luminosity, mass, and radius, are computed to
fit observations for three evolved giant stars, \psi Phoenicis, \gamma
Sagittae, and \alpha Ceti. The best-fit parameters are compared with previous
results. Results: The best-fit angular diameters and values of \chi^2 are
consistent with predictions using Phoenix and plane-parallel Atlas models. The
predicted effective temperatures, using SAtlas, are about 100 to 200 K lower,
and the predicted luminosities are also lower due to the differences in
effective temperatures. Conclusions: It is shown that the SAtlas program is a
robust tool for computing models of extended stellar atmospheres that are
consistent with observations. The best-fit parameters are consistent with
predictions using Phoenix models, and the fit to the interferometric data for
\psi Phe differs slightly, although both agree within the uncertainty of the
interferometric observations.Comment: 5 pages, 6 figures, Accepted for publication in A&A as a Research
Not
High-speed readout of high-Z pixel detectors with the LAMBDA detector
High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ``high-Z sensors for hard X-ray detection. This technical paper focuses on LAMBDAs high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chips ``continuous read-write function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan
Modeling the Infrared Bow Shock at delta Velorum: Implications for Studies of Debris Disks and lambda Bootis Stars
We have discovered a bow shock shaped mid-infrared excess region in front of
delta Velorum using 24 micron observations obtained with the Multiband Imaging
Photometer for Spitzer (MIPS). The excess has been classified as a debris disk
from previous infrared observations. Although the bow shock morphology was only
detected in the 24 micron observations, its excess was also resolved at 70
micron. We show that the stellar heating of an ambient interstellar medium
(ISM) cloud can produce the measured flux. Since delta Velorum was classified
as a debris disk star previously, our discovery may call into question the same
classification of other stars. We model the interaction of the star and ISM,
producing images that show the same geometry and surface brightness as is
observed. The modeled ISM is 15 times overdense relative to the average Local
Bubble value, which is surprising considering the close proximity (24 pc) of
delta Velorum.
The abundance anomalies of lambda Bootis stars have been previously explained
as arising from the same type of interaction of stars with the ISM. Low
resolution optical spectra of delta Velorum show that it does not belong to
this stellar class. The star therefore is an interesting testbed for the ISM
accretion theory of the lambda Bootis phenomenon.Comment: 11 pages, 1 table and 13 figures, emulateapj; Accepted for
publication in The Astrophysical Journa
The future of enterprise groupware applications
This paper provides a review of groupware technology and products. The purpose of this review is to investigate the appropriateness of current groupware technology as the basis for future enterprise systems and evaluate its role in realising, the currently emerging, Virtual Enterprise model for business organisation. It also identifies in which way current technological phenomena will transform groupware technology and will drive the development of the enterprise systems of the future
The Palomar Testbed Interferometer
The Palomar Testbed Interferometer (PTI) is a long-baseline infrared
interferometer located at Palomar Observatory, California. It was built as a
testbed for interferometric techniques applicable to the Keck Interferometer.
First fringes were obtained in July 1995. PTI implements a dual-star
architecture, tracking two stars simultaneously for phase referencing and
narrow-angle astrometry. The three fixed 40-cm apertures can be combined
pair-wise to provide baselines to 110 m. The interferometer actively tracks the
white-light fringe using an array detector at 2.2 um and active delay lines
with a range of +/- 38 m. Laser metrology of the delay lines allows for servo
control, and laser metrology of the complete optical path enables narrow-angle
astrometric measurements. The instrument is highly automated, using a
multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from
http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi
Oblique decision trees for spatial pattern detection: optimal algorithm and application to malaria risk
BACKGROUND: In order to detect potential disease clusters where a putative source cannot be specified, classical procedures scan the geographical area with circular windows through a specified grid imposed to the map. However, the choice of the windows' shapes, sizes and centers is critical and different choices may not provide exactly the same results. The aim of our work was to use an Oblique Decision Tree model (ODT) which provides potential clusters without pre-specifying shapes, sizes or centers. For this purpose, we have developed an ODT-algorithm to find an oblique partition of the space defined by the geographic coordinates. METHODS: ODT is based on the classification and regression tree (CART). As CART finds out rectangular partitions of the covariate space, ODT provides oblique partitions maximizing the interclass variance of the independent variable. Since it is a NP-Hard problem in R(N), classical ODT-algorithms use evolutionary procedures or heuristics. We have developed an optimal ODT-algorithm in R(2), based on the directions defined by each couple of point locations. This partition provided potential clusters which can be tested with Monte-Carlo inference. We applied the ODT-model to a dataset in order to identify potential high risk clusters of malaria in a village in Western Africa during the dry season. The ODT results were compared with those of the Kulldorff' s SaTScan™. RESULTS: The ODT procedure provided four classes of risk of infection. In the first high risk class 60%, 95% confidence interval (CI95%) [52.22–67.55], of the children was infected. Monte-Carlo inference showed that the spatial pattern issued from the ODT-model was significant (p < 0.0001). Satscan results yielded one significant cluster where the risk of disease was high with an infectious rate of 54.21%, CI95% [47.51–60.75]. Obviously, his center was located within the first high risk ODT class. Both procedures provided similar results identifying a high risk cluster in the western part of the village where a mosquito breeding point was located. CONCLUSION: ODT-models improve the classical scanning procedures by detecting potential disease clusters independently of any specification of the shapes, sizes or centers of the clusters
Modern optical astronomy: technology and impact of interferometry
The present `state of the art' and the path to future progress in high
spatial resolution imaging interferometry is reviewed. The review begins with a
treatment of the fundamentals of stellar optical interferometry, the origin,
properties, optical effects of turbulence in the Earth's atmosphere, the
passive methods that are applied on a single telescope to overcome atmospheric
image degradation such as speckle interferometry, and various other techniques.
These topics include differential speckle interferometry, speckle spectroscopy
and polarimetry, phase diversity, wavefront shearing interferometry,
phase-closure methods, dark speckle imaging, as well as the limitations imposed
by the detectors on the performance of speckle imaging. A brief account is
given of the technological innovation of adaptive-optics (AO) to compensate
such atmospheric effects on the image in real time. A major advancement
involves the transition from single-aperture to the dilute-aperture
interferometry using multiple telescopes. Therefore, the review deals with
recent developments involving ground-based, and space-based optical arrays.
Emphasis is placed on the problems specific to delay-lines, beam recombination,
polarization, dispersion, fringe-tracking, bootstrapping, coherencing and
cophasing, and recovery of the visibility functions. The role of AO in
enhancing visibilities is also discussed. The applications of interferometry,
such as imaging, astrometry, and nulling are described. The mathematical
intricacies of the various `post-detection' image-processing techniques are
examined critically. The review concludes with a discussion of the
astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics,
2002, to appear in April issu
The radius and other fundamental parameters of the F9 V star beta Virginis
We have used the Sydney University Stellar Interferometer (SUSI) to measure
the angular diameter of the F9 V star beta Virginis. After correcting for limb
darkening and combining with the revised Hipparcos parallax, we derive a radius
of 1.703 +/- 0.022 R_sun (1.3%). We have also calculated the bolometric flux
from published measurements which, combined with the angular diameter, implies
an effective temperature of 6059 +/- 49 K (0.8%). We also derived the
luminosity of beta Vir to be L = 3.51 +/- 0.08 L_sun (2.1%). Solar-like
oscillations were measured in this star by Carrier et al. (2005) and using
their value for the large frequency separation yields the mean stellar density
with an uncertainty of about 2%. Our constraints on the fundamental parameters
of beta Vir will be important to test theoretical models of this star and its
oscillations.Comment: accepted for publication in MNRAS. Updated reference
- …