4,945 research outputs found

    Power law velocity fluctuations due to inelastic collisions in numerically simulated vibrated bed of powder}

    Full text link
    Distribution functions of relative velocities among particles in a vibrated bed of powder are studied both numerically and theoretically. In the solid phase where granular particles remain near their local stable states, the probability distribution is Gaussian. On the other hand, in the fluidized phase, where the particles can exchange their positions, the distribution clearly deviates from Gaussian. This is interpreted with two analogies; aggregation processes and soft-to-hard turbulence transition in thermal convection. The non-Gaussian distribution is well-approximated by the t-distribution which is derived theoretically by considering the effect of clustering by inelastic collisions in the former analogy.Comment: 7 pages, using REVTEX (Figures are inculded in text body) %%%Replacement due to rivision (Europhys. Lett., in press)%%

    Hydrodynamic Description of Granular Convection

    Full text link
    We present a hydrodynamic model that captures the essence of granular dynamics in a vibrating bed. We carry out the linear stability analysis and uncover the instability mechanism that leads to the appearance of the convective rolls via a supercritical bifurcation of a bouncing solution. We also explicitly determine the onset of convection as a function of control parameters and confirm our picture by numerical simulations of the continuum equations.Comment: 14 pages, RevTex 11pages + 3 pages figures (Type csh
    • …
    corecore