5,303 research outputs found

    A quasi-time-dependent radiative transfer model of OH104.9+2.4

    Full text link
    We investigate the pulsation-phase dependent properties of the circumstellar dust shell (CDS) of the OH/IR star OH104.9+2.4 based on radiative transfer modeling (RTM) using the code DUSTY. Our previous study concerning simultaneous modeling of the spectral energy distribution (SED) and near-infrared (NIR) visibilities (Riechers et al. 2004) has now been extended by means of a more detailed analysis of the pulsation-phase dependence of the model parameters of OH104.9+2.4. In order to investigate the temporal variation in the spatial structure of the CDS, additional NIR speckle interferometric observations in the K' band were carried out with the 6 m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of 2.12 micron the diffraction-limited resolution of 74 mas was attained. Several key parameters of our previous best-fitting model had to be adjusted in order to be consistent with the newly extended amount of observational data. It was found that a simple rescaling of the bolometric flux F_bol is not sufficient to take the variability of the source into account, as the change in optical depth over a full pulsation cycle is rather high. On the other hand, the impact of a change in effective temperature T_eff on SED and visibility is rather small. However, observations, as well as models for other AGB stars, show the necessity of including a variation of T_eff with pulsation phase in the radiative transfer models. Therefore, our new best-fitting model accounts for these changes.Comment: 7 pages, including 5 postscript figures and 3 tables. Published in Astronomy and Astrophysics. (v1: accepted version; v2: published version, minor grammatical changes

    Spin Dynamics in the LTT Phase of ~1/8 Doped Single Crystal La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4

    Full text link
    We present La and Cu NMR relaxation measurements in single crystal La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4. A strong peak in the La spin-lattice relaxation rate observed in the spin ordered state is well-described by the BPP mechanism[1] and arises from continuous slowing of electronic spin fluctuations with decreasing temperature; these spin fluctuations exhibit XY-like anisotropy in the ordered state. The spin pseudogap is enhanced by the static charge-stripe order in the LTT phase.Comment: Four pages, three figure

    Dzyaloshinsky-Moriya Spin Canting in the LTT Phase of La2-x-yEuySrxCuO4

    Full text link
    The Cu spin magnetism in La2-x-yEuySrxCuO4 (x<=0.17; y<=0.2) has been studied by means of magnetization measurements up to 14 T. Our results clearly show that in the antiferromagnetic phase Dzyaloshinsky-Moriya (DM)superexchange causes Cu spin canting not only in the LTO phase but also in the LTLO and LTT phases. In La1.8Eu0.2CuO4 the canted DM-moment is about 50% larger than in pure La2CuO4 which we attribute to the larger octahedral tilt angle. We also find clear evidence that the size of the DM-moment does not change significantly at the structural transition at T_LT from LTO to LTLO and LTT. The most important change induced by the transition is a significant reduction of the magnetic coupling between the CuO2 planes. As a consequence, the spin-flip transition of the canted Cu spins which is observed in the LTO phase for magnetic field perpendicular to the CuO2 planes disappears in the LTT phase. The shape of the magnetization curves changes from the well known spin-flip type to a weak-ferromagnet type. However, no spontaneous weak ferromagnetism is observed even at very low temperatures, which seems to indicate that the interlayer decoupling in our samples is not perfect. Nonetheless, a small fraction (<15%) of the DM-moments can be remanently magnetized throughout the entire antiferromagnetically ordered LTT/LTLO phase, i.e. for T<T_LT and x<0.02. It appears that the remanent DM-moment is perpendicular to the CuO2 planes. For magnetic field parallel to the CuO2 planes we find that the critical field of the spin-flop transition decreases in the LTLO phase, which might indicate a competition between different in-plane anisotropies. To study the Cu spin magnetism in La2-x-yEuySrxCuO4, a careful analysis of the Van Vleck paramagnetism of the Eu3+ ions was performed.Comment: 22 pages, 27 figure

    Stripe structure, spectral feature and soliton gap in high Tc cuprates

    Full text link
    We show that the lightly doped La_{2-x}Sr_{x}CuO_{4} can be described in terms of a stripe magnetic structure or soliton picture. The internal relationship between the recent neutron observation of the diagonal (x=0.05) to vertical (x >= 0.06) stripe transition, which was predicted, and the concomitant metal-insulator transition is clarified by this solitonic physics. The phase diagram with the unidentified transition lines between antiferromagnetic to stripe phases, the doping dependence of the modulation period, the origin of the mid-infrared optical absorption are investigated comparatively with other single layer systems: La_{2-x}Sr_{x}NiO_{4} and (La,Nd)_{2-x}Sr_{x}CuO_{4}. The novel type of quasi-particles and holes is fully responsible for metallic conduction and ultimately superconductivity.Comment: 4 pages RevTex, 5 figure

    Phantom for Evaluating Accuracy of Image Registration Software

    Get PDF
    Provided is a phantom for evaluating the accuracy of image registration software based on a result of matching tomograms of a predetermined position of the phantom, taken using two or more imaging apparatuses. Accordingly, it is possible to more efficiently evaluate the accuracy of the image registration software by comparing the tomograms with one another using a three-dimensional analysis. In addition, it is possible to facilitate the comparison of the tomograms with one another by installing a plurality of indicating bars in the phantom so that their cross sections can appear on each of the tomograms

    Shear stress fluctuations in the granular liquid and solid phases

    Full text link
    We report on experimentally observed shear stress fluctuations in both granular solid and fluid states, showing that they are non-Gaussian at low shear rates, reflecting the predominance of correlated structures (force chains) in the solidlike phase, which also exhibit finite rigidity to shear. Peaks in the rigidity and the stress distribution's skewness indicate that a change to the force-bearing mechanism occurs at the transition to fluid behaviour, which, it is shown, can be predicted from the behaviour of the stress at lower shear rates. In the fluid state stress is Gaussian distributed, suggesting that the central limit theorem holds. The fibre bundle model with random load sharing effectively reproduces the stress distribution at the yield point and also exhibits the exponential stress distribution anticipated from extant work on stress propagation in granular materials.Comment: 11 pages, 3 figures, latex. Replacement adds journal reference and addresses referee comment

    Suppression of Antiferromagnetic Order by Light Hole Doping in La_2Cu_{1-x}Li_xO_4: A ^{139}La NQR Study

    Full text link
    ^{139}La nuclear quadrupole resonance measurements in lightly doped La_2Cu_{1-x}Li_xO_4 have been performed to reveal the dependence of the magnetic properties of the antiferromagnetic CuO_2 planes on the character of the doped holes and their interactions with the dopant. A detailed study shows that the magnetic properties are remarkably insensitive to the character of the dopant impurity. This indicates that the added holes form previously unrecognized collective structures.Comment: 4 pages, 3 figures. Slightly modified version, as accepted for publication in Physical Review Letter

    Superconductivity of the Sr2Ca12Cu24O41Sr_2 Ca_{12} Cu_{24} O_{41} spin ladder system: Are the superconducting pairing and the spin-gap formation of the same origin?

    Full text link
    Pressure-induced superconductivity in a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} has not been studied on a microscopic level so far although the superconductivity was already discovered in 1996. We have improved high-pressure technique with using a large high-quality crystal, and succeeded in studying the superconductivity using 63^{63}Cu nuclear magnetic resonance (NMR). We found that anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses a s-wavelike character in the meaning that a finite gap exists in the quasi-particle excitation: At pressure of 3.5GPa we observed two excitation modes in the normal state from the relaxation rate T11T_1^{-1}. One gives rise to an activation-type component in T11T_1^{-1}, and the other TT-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.Comment: to be published in Phys. Rev. Let

    ^{17}O and ^{51}V NMR for the zigzag spin-1 chain compound CaV2O4

    Get PDF
    51^{51}V NMR studies on CaV2O4 single crystals and 17^{17}O NMR studies on 17^{17}O-enriched powder samples are reported. The temperature dependences of the 17^{17}O NMR line width and nuclear spin-lattice relaxation rate give strong evidence for a long-range antiferromagnetic transition at Tn = 78 K in the powder. Magnetic susceptibility measurements show that Tn = 69 K in the crystals. A zero-field 51^{51}V NMR signal was observed at low temperatures (f \approx 237 MHz at 4.2 K) in the crystals. The field swept spectra with the field in different directions suggest the presence of two antiferromagnetic substructures. Each substructure is collinear, with the easy axes of the two substructures separated by an angle of 19(1) degree, and with their average direction pointing approximately along the b-axis of the crystal structure. The two spin substructures contain equal number of spins. The temperature dependence of the ordered moment, measured up to 45 K, shows the presence of an energy gap Eg in the antiferromagnetic spin wave excitation spectrum. Antiferromagnetic spin wave theory suggests that Eg lies between 64 and 98 K.Comment: 11 pages, 14 figures. v2: 2 new figures; version published in Phys. Rev.

    Charge order and low frequency spin dynamics in lanthanum cuprates revealed by Nuclear Magnetic Resonance

    Full text link
    We report detailed 17O, 139La, and 63Cu Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) measurements in a stripe ordered La1.875Ba0.125CuO4 single crystal and in oriented powder samples of La1.8-xEu0.2SrxCuO4. We observe a partial wipeout of the 17O NMR intensity and a simultaneous drop of the 17O electric field gradient (EFG) at low temperatures where the spin stripe order sets in. In contrast, the 63Cu intensity is completely wiped out at the same temperature. The drop of the 17O quadrupole frequency is compatible with a charge stripe order. The 17O spin lattice relaxation rate shows a peak similar to that of the 139La, which is of magnetic origin. This peak is doping dependent and is maximal at x ~ 1/8.Comment: submitted to European Physical Journal Special Topic
    corecore