13,665 research outputs found

    Global logistics indicators, supply chain metrics, and bilateral trade patterns

    Get PDF
    Past research into the determinants of international trade highlighted the importance of the basic spatial gravity model augmented by additional variables representing sources of friction. Studies modeled many sources of friction using various proxies, including indices based on expert judgment in some cases. This paper focuses on logistics friction and draws on a data set recently compiled by the World Bank with specific quantitative metrics of logistics performance interms of time, cost, and variability in time. It finds that the new variables that relate directly to logistics performance have a statistically significant relationship with the level of bilateral trade. It also finds that a single logistics index can capture virtually all of the explanatory power of multiple logistics indicators. The findings should spur public and private agencies that have direct or indirect power over logistics performance to focus attention on reducing sources of friction so as to improve their country's ability to compete in today's global economy. Moreover, since the logistics metrics are directly related to operational performance, countries can use these metrics to target actions to improve logistics and monitor their progress.Common Carriers Industry,Transport and Trade Logistics,Economic Theory&Research,Free Trade,Trade Policy

    A Unified treatment of small and large- scale dynamos in helical turbulence

    Get PDF
    Helical turbulence is thought to provide the key to the generation of large-scale magnetic fields. Turbulence also generically leads to rapidly growing small-scale magnetic fields correlated on the turbulence scales. These two processes are usually studied separately. We give here a unified treatment of both processes, in the case of random fields, incorporating also a simple model non-linear drift. In the process we uncover an interesting plausible saturated state of the small-scale dynamo and a novel analogy between quantum mechanical (QM) tunneling and the generation of large scale fields. The steady state problem of the combined small/large scale dynamo, is mapped to a zero-energy, QM potential problem; but a potential which, for non-zero mean helicity, allows tunneling of bound states. A field generated by the small-scale dynamo, can 'tunnel' to produce large-scale correlations, which in steady state, correspond to a force-free 'mean' field.Comment: 4 pages, 1 figure, Physical Review Letters, in pres

    The nucleus retroambiguus control of respiration

    Get PDF
    The role of the nucleus retroambiguus (NRA) in the context of respiration control has been subject of debate for considerable time. To solve this problem, we chemically (using d, L-homocysteic acid) stimulated the NRA in unanesthetized precollicularly decerebrated cats and studied the respiratory effect via simultaneous measurement of tracheal pressure and electromyograms of diaphragm, internal intercostal (IIC), cricothyroid (CT), and external oblique abdominal (EO) muscles, NRA-stimulation 0-1 mm caudal to the obex resulted in recruitment of IIC muscle and reduction in respiratory frequency. NRA-stimulation 1-3 mm caudal to the obex produced vocalization along with CT activation and slight increase in tracheal pressure, but no change in respiratory frequency. NRA-stimulation 3-5 mm caudal to the obex produced CT muscle activation and an increase in respiratory frequency, but no vocalization. NRA-stimulation 5-8 mm caudal to the obex produced EO muscle activation and reduction in respiratory frequency. A change to the inspiratory effort was never observed, regardless of which NRA part was stimulated. The results demonstrate that NRA does not control eupneic inspiration but consists of topographically separate groups of premotor interneurons each producing detailed motor actions. These motor activities have in common that they require changes to eupneic breathing. Different combination of activation of these premotor neurons determines the final outcome, e.g., vocalization, vomiting, coughing, sneezing, mating posture, or child delivery. Higher brainstem regions such as the midbrain periaqueductal gray (PAG) decides which combination of NRA neurons are excited. In simple terms, the NRA is the piano, the PAG one of the piano players

    Penetration depth of low-coherence enhanced backscattered light in sub-diffusion regime

    Full text link
    The mechanisms of photon propagation in random media in the diffusive multiple scattering regime have been previously studied using diffusion approximation. However, similar understanding in the low-order (sub-diffusion) scattering regime is not complete due to difficulties in tracking photons that undergo very few scatterings events. Recent developments in low-coherence enhanced backscattering (LEBS) overcome these difficulties and enable probing photons that travel very short distances and undergo only a few scattering events. In LEBS, enhanced backscattering is observed under illumination with spatial coherence length L_sc less than the scattering mean free path l_s. In order to understand the mechanisms of photon propagation in LEBS in the subdiffusion regime, it is imperative to develop analytical and numerical models that describe the statistical properties of photon trajectories. Here we derive the probability distribution of penetration depth of LEBS photons and report Monte Carlo numerical simulations to support our analytical results. Our results demonstrate that, surprisingly, the transport of photons that undergo low-order scattering events has only weak dependence on the optical properties of the medium (l_s and anisotropy factor g) and strong dependence on the spatial coherence length of illumination, L_sc, relative to those in the diffusion regime. More importantly, these low order scattering photons typically penetrate less than l_s into the medium due to low spatial coherence length of illumination and their penetration depth is proportional to the one-third power of the coherence volume (i.e. [l_s \pi L_sc^2 ]^1/3).Comment: 32 pages(including 7 figures), modified version to appear in Phys. Rev.

    Family planning methods among women in a vaginal microbicide feasibility study in rural KwaZulu-Natal, South Africa

    No full text
    This study investigated contraceptive use among women in rural KwaZulu-Natal, South Africa. Of 866 sexually active women not intending pregnancy and screened for a microbicide feasibility study, 466 (54%) reported currently using modern contraceptives: injectables (31%), condoms (12%), sterilization (60%) and pills (4%). Multivariable logistic regression analyses revealed statistically significantly higher odds of current contraceptive use among married vs. engaged/unmarried women (aOR 1.64), multiparous vs. nulliparous (aOR 4.45) and women who completed secondary education or above vs. primary or less (aOR 1.64). Significantly lower odds of use were observed among women aged 40+ vs. age 15-19 (aOR 0.38). Age, marital status, education level and parity were associated with different contraceptive method choices. Among 195 women followed longitudinally for 9 months, contraceptive use increased significantly from 56% to 70%, largely due to increased condom use (15% to 28%). Results highlight the importance of integrating family planning and HIV/STI prevention counseling and informing promotion of further contraceptive uptake among women not intending pregnancy

    Primordial Magnetic Field Limits from Cosmic Microwave Background Bispectrum of Magnetic Passive Scalar Modes

    Full text link
    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher order effect. Apart from a compensated scalar mode, stochastic primordial magnetic fields also produce scalar anisotropic stress that remains uncompensated till neutrino decoupling. This gives rise to an adiabatic-like scalar perturbation mode that evolves passively thereafter (called the passive mode). We compute the CMB reduced bispectrum (bl1l2l3b_{l_{_1}l_{_2}l_{_3}}) induced by this passive mode, sourced via the Sachs-Wolfe effect, on large angular scales. For any configuration of bispectrum, taking a partial sum over mode-coupling terms, we find a typical value of l1(l1+1)l3(l3+1)bl1l2l369×1016l_1(l_1+1)l_3(l_3+1) b_{l_{_1}l_{_2}l_{_3}} \sim 6-9 \times 10^{-16}, for a magnetic field of B03B_0 \sim 3 nG, assuming a nearly scale-invariant magnetic spectrum . We also evaluate, in full, the bispectrum for the squeezed collinear configuration over all angular mode-coupling terms and find l1(l1+1)l3(l3+1)bl1l2l31.4×1016l_1(l_1+1)l_3(l_3+1) b_{l_{_1}l_{_2}l_{_3}} \approx -1.4 \times 10^{-16}. These values are more than 106\sim 10^6 times larger than the previously calculated magnetic compensated scalar mode CMB bispectrum. Observational limits on the bispectrum from WMAP7 data allow us to set upper limits of B02B_0 \sim 2 nG on the present value of the cosmic magnetic field of primordial origin. This is over 10 times more stringent than earlier limits on B0B_0 based on the compensated mode bispectrum.Comment: 9 page

    Price Elasticity of Demand for Term Life Insurance and Adverse Selection

    Get PDF
    This paper provides an empirical estimate of price' and risk' elasticities of demand for term life insurance for those who purchase some insurance. It finds that the elasticity with respect to changes in premiums is generally higher than the elasticity with respect to changes in risk. It also finds that the elasticity, in the range of -0.3 to -0.5, is sufficiently low that adverse selection in term life insurance is unlikely to lead to a death spiral and may not even lead to measured effects of adverse selection on total purchases.
    corecore