70 research outputs found
Multiscale modeling and simulation for polymer melt flows between parallel plates
The flow behaviors of polymer melt composed of short chains with ten beads
between parallel plates are simulated by using a hybrid method of molecular
dynamics and computational fluid dynamics. Three problems are solved: creep
motion under a constant shear stress and its recovery motion after removing the
stress, pressure-driven flows, and the flows in rapidly oscillating plates. In
the creep/recovery problem, the delayed elastic deformation in the creep motion
and evident elastic behavior in the recovery motion are demonstrated. The
velocity profiles of the melt in pressure-driven flows are quite different from
those of Newtonian fluid due to shear thinning. Velocity gradients of the melt
become steeper near the plates and flatter at the middle between the plates as
the pressure gradient increases and the temperature decreases. In the rapidly
oscillating plates, the viscous boundary layer of the melt is much thinner than
that of Newtonian fluid due to the shear thinning of the melt. Three different
rheological regimes, i.e., the viscous fluid, visco-elastic liquid, and
visco-elastic solid regimes, form over the oscillating plate according to the
local Deborah numbers. The melt behaves as a viscous fluid in a region for
, and the crossover between the liquid-like and
solid-like regime takes place around (where
is the angular frequency of the plate and and
are Rouse and relaxation time, respectively).Comment: 13pages, 12figure
-body Simulation of Planetesimal Formation Through Gravitational Instability of a Dust Layer
We performed N-body simulations of a dust layer without a gas component and
examined the formation process of planetesimals. We found that the formation
process of planetesimals can be divided into three stages: the formation of
non-axisymmetric wake-like structures, the creation of aggregates, and the
collisional growth of the aggregates. Finally, a few large aggregates and many
small aggregates are formed. The mass of the largest aggregate is larger than
the mass predicted by the linear perturbation theory. We examined the
dependence of system parameters on the planetesimal formation. We found that
the mass of the largest aggregates increase as the size of the computational
domain increases. However the ratio of the aggregate mass to the total mass
is almost constant . The mass of
the largest aggregate increases with the optical depth and the Hill radius of
particles.Comment: 34 pages, 11 figures. Accepted for publication in Ap
Periodontal disease and atherosclerosis from the viewpoint of the relationship between community periodontal index of treatment needs and brachial-ankle pulse wave velocity
BACKGROUND: It has been suggested that periodontal disease may be an independent risk factor for the development of atherosclerosis. However, the relationship between periodontal disease and atherosclerosis has not been fully elucidated. This study aimed to assess the effects of periodontal disease on atherosclerosis. METHODS: The study design was a cross-sectional study. Subjects were 291 healthy male workers in Japan. We used the Community Periodontal Index of Treatment Needs (CPITN) score, average probing depth and gingival bleeding index (rate of bleeding gums) to assess the severity of periodontal disease. We also used the Brachial-Ankle Pulse Wave Velocity (baPWV) as the index for the development of atherosclerosis. RESULTS: The unadjusted odds ratio (OR) of atherosclerosis in relation to the CPITN score was 1.41 [95% CI: 1.16–1.73]. However, after adjustment for age, systolic blood pressure and smoking, the CPITN score had no relationship with atherosclerosis (adjusted OR: 0.91 [0.68–1.20]). CONCLUSION: Our results show no relationship between mild periodontal disease and atherosclerosis after appropriate adjustments
Individualized Anatomic Anterior Cruciate Ligament Reconstruction
Arthroscopic anterior cruciate ligament reconstruction (ACL-R) is a technique that continues to evolve. Good results have been established with respect to reducing anteroposterior laxity. However, these results have come into question because nonanatomic techniques have been ineffective at restoring knee kinematics and raised concerns that abnormal kinematics may impact long-term knee health. Anatomic ACL-R attempts to closely reproduce the patient's individual anatomic characteristics. Measurements of the patient's anatomy help determine graft choice and whether anatomic reconstruction should be performed with a single- or double-bundle technique. The bony landmarks and insertions of the anterior cruciate ligament (ACL) are preserved to assist with anatomic placement of both tibial and femoral tunnels. An anatomic single- or double-bundle reconstruction is performed with a goal of reproducing the characteristics of the native ACL. Long-term outcomes for anatomic ACL reconstruction are unknown. By individualizing ACL-R, we strive to reproduce the patient's native anatomy and restore knee kinematics to improve patient outcomes
- …