418 research outputs found

    Ionization Source of a Minor-axis Cloud in the Outer Halo of M82

    Get PDF
    The M82 `cap' is a gas cloud at a projected radius of 11.6 kpc along the minor axis of this well known superwind source. The cap has been detected in optical line emission and X-ray emission and therefore provides an important probe of the wind energetics. In order to investigate the ionization source of the cap, we observed it with the Kyoto3DII Fabry-Perot instrument mounted on the Subaru Telescope. Deep continuum, Ha, [NII]6583/Ha, and [SII]6716,6731/Ha maps were obtained with sub-arcsecond resolution. The superior spatial resolution compared to earlier studies reveals a number of bright Ha emitting clouds within the cap. The emission line widths (< 100 km s^-1 FWHM) and line ratios in the newly identified knots are most reasonably explained by slow to moderate shocks velocities (v_shock = 40--80 km s^-1) driven by a fast wind into dense clouds. The momentum input from the M82 nuclear starburst region is enough to produce the observed shock. Consequently, earlier claims of photoionization by the central starburst are ruled out because they cannot explain the observed fluxes of the densest knots unless the UV escape fraction is very high (f_esc > 60%), i.e., an order of magnitude higher than observed in dwarf galaxies to date. Using these results, we discuss the evolutionary history of the M82 superwind. Future UV/X-ray surveys are expected to confirm that the temperature of the gas is consistent with our moderate shock model.Comment: 7 pages, 5 figures, 2 tables; Accepted for publication in Ap

    A simple proof of Perelman's collapsing theorem for 3-manifolds

    Full text link
    We will simplify earlier proofs of Perelman's collapsing theorem for 3-manifolds given by Shioya-Yamaguchi and Morgan-Tian. Among other things, we use Perelman's critical point theory (e.g., multiple conic singularity theory and his fibration theory) for Alexandrov spaces to construct the desired local Seifert fibration structure on collapsed 3-manifolds. The verification of Perelman's collapsing theorem is the last step of Perelman's proof of Thurston's Geometrization Conjecture on the classification of 3-manifolds. Our proof of Perelman's collapsing theorem is almost self-contained, accessible to non-experts and advanced graduate students. Perelman's collapsing theorem for 3-manifolds can be viewed as an extension of implicit function theoremComment: v1: 9 Figures. In this version, we improve the exposition of our arguments in the earlier arXiv version. v2: added one more grap

    Forming Young Bulges within Existing Disks: Statistical Evidence for External Drivers

    Full text link
    Contrary to traditional models of galaxy formation, recent observations suggest that some bulges form within preexisting disk galaxies. Such late-epoch bulge formation within disks seems to be linked to disk gas inflow and central star formation, caused by either internal secular processes or galaxy mergers and interactions. We identify a population of galaxies likely to be experiencing active bulge growth within disks, using the criterion that the color within the half-light radius is bluer than the outer disk color. Such blue-centered galaxies make up >10% of star-forming disk galaxies within the Nearby Field Galaxy Survey, a broad survey designed to represent the natural diversity of the low-z galaxy population over a wide range of luminosities and environments. Blue-centered galaxies correlate at 99% confidence with morphological peculiarities suggestive of minor mergers and interactions. From this and other evidence, we argue that external drivers rather than internal secular processes probably account for the majority of blue-centered galaxies. We go on to discuss quantitative plausibility arguments indicating that blue-centered evolutionary phases may represent an important mode of bulge growth for most disk galaxies, leading to significant changes in bulge-to-disk ratio without destroying disks. If this view is correct, bulge growth within disks may be a natural consequence of the repeated galaxy mergers and interactions inherent in hierarchical galaxy formation.Comment: 18 pages including 12 figures, AJ, accepte

    Lensing Effects on the Protogalaxy Candidate cB58 and their Implications for the Cosmological Constant

    Get PDF
    The amplification of the protogalaxy candidate cB58 due to gravitational lensing by the foreground cluster of galaxies MS1512.4+3647 is quantified based on recent ROSAT and ASCA X-ray observations. It is found that the amplification is at most 25 for any reasonable cosmological model with or without cosmological constant. It is also argued that the system may be used to place new constraints on the value of the cosmological constant. The gas mass fraction for this cluster is found to be about 0.2.Comment: LaTex, 9 pages, 9 figures, uses aas2pp4.sty, Accepted for publication in Ap

    The HST Cosmos Project: Contribution from the Subaru Telescope

    Full text link
    The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project.The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in II(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B,V,r,i,B, V, r^\prime, i^\prime, and z z^\prime) using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.Comment: 4 pages, 3 figures, to appear in the Proceedings of the 6th East Asian Meeting on Astronomy, JKAS, 39, in pres

    Molecular Gas in Candidate Double-Barred Galaxies II. Cooler, Less Dense Gas Associated with Stronger Central Concentrations

    Full text link
    We have performed a multi-transition CO study of the centers of seven double-barred galaxies that exhibit a variety of molecular gas morphologies to determine if the molecular gas properties are correlated with the nuclear morphology and star forming activity. Near infrared galaxy surveys have revealed the existence of nuclear stellar bars in a large number of barred or lenticular galaxies. High resolution CO maps of these galaxies exhibit a wide range of morphologies. Recent simulations of double-barred galaxies suggest that variations in the gas properties may allow it to respond differently to similar gravitational potentials. We find that the 12CO J=3-2/J=2-1 line ratio is lower in galaxies with centrally concentrated gas distributions and higher in galaxies with CO emission dispersed around the galactic center in rings and peaks. The 13CO/12CO J=2-1 line ratios are similar for all galaxies, which indicates that the J=3-2/J=2-1 line ratio is tracing variations in gas temperature and density, rather than variations in optical depth. There is evidence that the galaxies which contain more centralized CO distributions are comprised of molecular gas that is cooler and less dense. Observations suggest that the star formation rates are higher in the galaxies containing the warmer, denser, less centrally concentrated gas. It is possible that either the bar dynamics are responsible for the variety of gas distributions and densities (and hence the star formation rates) or that the star formation alone is responsible for modifying the gas properties.Comment: 27 pages + 6 figures; to appear in the April 20, 2003 issue of Ap

    The HI content of star-forming galaxies at z = 0.24

    Full text link
    We use observations from the Giant Metrewave Radio Telescope (GMRT) to measure the atomic hydrogen gas content of star-forming galaxies at z = 0.24 (i.e. a look-backtime of ~3 Gyr). The sample of galaxies studied were selected from Halpha-emitting field galaxies detected in a narrow-band imaging survey with the Subaru Telescope. The Anglo-Australian Telescope was used to obtain precise optical redshifts for these galaxies. We then coadded the HI 21 cm emission signal for all the galaxies within the GMRT spectral line data cube. From the coadded signal of 121 galaxies, we measure an average atomic hydrogen gas mass of (2.26 +- 0.90)*10^9 solar masses. We translate this HI signal into a cosmic density of neutral gas at z = 0.24 of Omega_gas = (0.91 +- 0.42)*10^-3. This is the current highest redshift at which Omega_gas has been constrained from 21 cm emission and our value is consistent with that estimated from damped Lyman-alpha systems around this redshift. We also find that the correlations between the Halpha luminosity and the radio continuum luminosity and between the star formation rate and the HI gas content in star-forming galaxies at z = 0.24 are consistent with the correlations found at z = 0. These two results suggest that the star formation mechanisms in field galaxies ~3 Gyr ago were not substantially different from the present, even though the star formation rate is 3 times higher.Comment: 11 pages, contains 9 figures and 1 table. Accepted for publishing in MNRAS 2007 January 22. Received 2007 January 22; in original form 2006 November 3
    corecore