5 research outputs found

    Screening and Identification of a Targeting Peptide to Hepatocarcinoma from a Phage Display Peptide Library

    No full text
    Ligands specific to cell surface receptors have been heavily investigated in cancer research. Phage display technology is a powerful tool in this field and may impact clinical issues including functional diagnosis and targeted drug delivery. In this study, a hepatocellular carcinoma cell line (HepG2) and a normal hepatocyte line (L-02) were used to carry out subtractive screening in vitro with a phage display-7 peptide library. After four rounds of panning, there was an obvious enrichment for the phages specifically binding to the HepG2 cells, and the output/input ratio of phages increased about 976-fold (from 0.3×10−7 to 292.8×10−7). A group of peptides capable of binding specifically to the hepatoma cells were obtained, and the affinity of these peptides to the targeting cells and tissues was studied. Through a cell-based ELISA, immunocytochemical staining, immunohistochemical staining, and immunofluorescence, the S1 phage and synthetic peptide HCBP1 (sequence FQHPSFI) were shown to bind to the tumor cell surfaces of two hepatoma cell lines and biopsy specimens, but not to normal hepatocytes, other different cancer cells, or nontumor liver tissues. In conclusion, the peptide HCBP1 may be a potential candidate for targeted drug delivery in therapy of hepatoma cancer

    Emerging roles of zinc finger proteins in regulating adipogenesis

    No full text
    Proteins containing the zinc finger domain(s) are named zinc finger proteins (ZFPs), which are one of the largest classes of transcription factors in eukaryotic genomes. A large number of ZFPs have been studied and many of them were found to be involved regulating normal growth and development of cells and tissues through diverse signal transduction pathways. Recent studies revealed that a small but increasing number of ZFPs could function as key transcriptional regulators involved in adipogenesis. As the prevalence of obesity and metabolic disorders, the investigation of molecular regulatory mechanisms of adipocyte development must be more completely understood to develop novel and long term impact strategies for ameliorating obesity. In this review, we discuss recent work which has documented that ZFPs are important functional contributors to the regulation of adipogenesis. Taken altogether these data lead to the conclusion that ZFPs may become promising targets to combat human obesity
    corecore