571 research outputs found
Transgenic mice overexpressing the extracellular domain of NCAM are impaired in working memory and cortical plasticity
The neural cell adhesion molecule, NCAM, is a pivotal regulator of neural development, with key roles in axonal and dendritic growth and synaptic plasticity. Alterations in NCAM expression or proteolytic cleavage have been linked to human neuropsychiatric disorders such as schizophrenia, bipolar disorder and Alzheimer’s disease, and may contribute to cognitive dysfunction. We have generated mice overexpressing the NCAM extracellular (EC) proteolytic cleavage fragment which has been reported to be increased in schizophrenic versus normal brains. These mice show impaired GABAergic innervation and reduced number of apical dendritic spines on pyramidal neurons in the prefrontal cortex (PFC). Here, these NCAM-EC transgenic mice were subjected to behavioral tasks and electrophysiological measurements to determine the impact of structural abnormalities in the PFC on synaptic and cognitive functions. NCAM-EC mice exhibited impaired working memory in a delayed non-match-to-sample task, which requires PFC function, but showed no differences in anxiety, olfactory abilities, or sociability. Transgenic mice displayed impaired long- and short-term potentiation in the PFC but normal synaptic plasticity in the hippocampus, suggesting that the abnormal synaptic innervation in NCAM-EC mice impairs PFC plasticity and alters working memory. These findings may have implications for cognitive dysfunctions observed in neuropsychiatric disorders
Development of novel methods for non-canonical myeloma protein analysis with an innovative adaptation of immunofixation electrophoresis, native top-down mass spectrometry, and middle-down de novo sequencing
OBJECTIVES: Multiple myeloma (MM) is a malignant plasma cell neoplasm, requiring the integration of clinical examination, laboratory and radiological investigations for diagnosis. Detection and isotypic identification of the monoclonal protein(s) and measurement of other relevant biomarkers in serum and urine are pivotal analyses. However, occasionally this approach fails to characterize complex protein signatures. Here we describe the development and application of next generation mass spectrometry (MS) techniques, and a novel adaptation of immunofixation, to interrogate non-canonical monoclonal immunoproteins. METHODS: Immunoprecipitation immunofixation (IP-IFE) was performed on a Sebia Hydrasys Scan2. Middle-down de novo sequencing and native MS were performed with multiple instruments (21T FT-ICR, Q Exactive HF, Orbitrap Fusion Lumos, and Orbitrap Eclipse). Post-acquisition data analysis was performed using Xcalibur Qual Browser, ProSight Lite, and TDValidator. RESULTS: We adapted a novel variation of immunofixation electrophoresis (IFE) with an antibody-specific immunosubtraction step, providing insight into the clonal signature of gamma-zone monoclonal immunoglobulin (M-protein) species. We developed and applied advanced mass spectrometric techniques such as middle-down de novo sequencing to attain in-depth characterization of the primary sequence of an M-protein. Quaternary structures of M-proteins were elucidated by native MS, revealing a previously unprecedented non-covalently associated hetero-tetrameric immunoglobulin. CONCLUSIONS: Next generation proteomic solutions offer great potential for characterizing complex protein structures and may eventually replace current electrophoretic approaches for the identification and quantification of M-proteins. They can also contribute to greater understanding of MM pathogenesis, enabling classification of patients into new subtypes, improved risk stratification and the potential to inform decisions on future personalized treatment modalities
Postoperative peri-axillary seroma following axillary artery cannulation for surgical treatment of acute type A aortic dissection
The arterial cannulation site for optimal tissue perfusion and cerebral protection during cardiopulmonary bypass (CPB) for surgical treatment of acute type A aortic dissection remains controversial. Right axillary artery cannulation confers significant advantages, because it provides antegrade arterial perfusion during cardiopulmonary bypass, and allows continuous antegrade cerebral perfusion during hypothermic circulatory arrest, thereby minimizing global cerebral ischemia. However, right axillary artery cannulation has been associated with serious complications, including problems with systemic perfusion during cardiopulmonary bypass, problems with postoperative patency of the artery due to stenosis, thrombosis or dissection, and brachial plexus injury. We herein present the case of a 36-year-old Caucasian man with known Marfan syndrome and acute type A aortic dissection, who had direct right axillary artery cannulation for surgery of the ascending aorta. Postoperatively, the patient developed an axillary perigraft seroma. As this complication has, not, to our knowledge, been reported before in cardiothoracic surgery, we describe this unusual complication and discuss conservative and surgical treatment options
A new large-bodied oviraptorosaurian theropod dinosaur from the Latest Cretaceous of Western North America
The oviraptorosaurian theropod dinosaur clade Caenagnathidae has long been enigmatic due to the incomplete nature of nearly all described fossils. Here we describe Anzu wyliei gen. et sp. nov., a new taxon of large-bodied caenagnathid based primarily on three well-preserved partial skeletons. The specimens were recovered from the uppermost Cretaceous (upper Maastrichtian) Hell Creek Formation of North and South Dakota, and are therefore among the stratigraphically youngest known oviraptorosaurian remains. Collectively, the fossils include elements from most regions of the skeleton, providing a wealth of information on the osteology and evolutionary relationships of Caenagnathidae. Phylogenetic analysis reaffirms caenagnathid monophyly, and indicates that Anzu is most closely related to Caenagnathus collinsi, a taxon that is definitively known only from a mandible from the Campanian Dinosaur Park Formation of Alberta. The problematic oviraptorosaurs Microvenator and Gigantoraptor are recovered as basal caenagnathids, as has previously been suggested. Anzu and other caenagnathids may have favored well-watered floodplain settings over channel margins, and were probably ecological generalists that fed upon vegetation, small animals, and perhaps eggs
- …