114 research outputs found

    Music in Quarantine: Connections Between Changes in Lifestyle, Psychological States, and Musical Behaviors During COVID-19 Pandemic

    Get PDF
    Music is not only the art of organized sound but also a compound of social interaction among people, built upon social and environmental foundations. Since the beginning of the COVID-19 outbreak, containment measures such as shelter-in-place, lockdown, social distancing, and self-quarantine have severely impacted the foundation of human society, resulting in a drastic change in our everyday experience. In this paper, the relationships between musical behavior, lifestyle, and psychological states during the shelter-in-place period of the COVID-19 pandemic are investigated. An online survey on musical experience, lifestyle changes, stress level, musical behaviors, media usage, and environmental sound perception was conducted. The survey was conducted in early June 2020. Responses from 620 people in 24 countries were collected, with the large proportion of the responses coming from the U.S. (55.5%) and India (21.4%). Structural equation modeling (SEM) analysis revealed causal relationships between lifestyle, stress, and music behaviors. Elements such as stress-level change, work risk, and staying home contribute to changes in musical experiences, such as moderating emotion with music, feeling emotional with music, and being more attentive to music. Stress-level change was correlated with work risk and income change, and people who started living with others due to the outbreak, especially with their children, indicated less change in stress level. People with more stress-level change tended to use music more purposefully for their mental well-being, such as to moderate emotions, to influence mood, and to relax. In addition, people with more stress-level change tend to be more annoyed by neighbors' noise. Housing type was not directly associated with annoyance; however, attention to environmental sounds decreased when the housing type was smaller. Attention to environmental and musical sounds and the emotional responses to them are highly inter-correlated. Multi-group SEM based on musicians showed that the causal relationship structure for professional musicians differs from that of less-experienced musicians. For professional musicians, staying at home was the only component that caused all musical behavior changes; stress did not cause musical behavior changes. Regarding Internet use, listening to music via YouTube and streaming was preferred over TV and radio, especially among less-experienced musicians, while participation in the online music community was preferred by more advanced musicians. This work suggests that social, environmental, and personal factors and limitations influence the changes in our musical behavior, perception of sonic experience, and emotional recognition, and that people actively accommodated the unusual pandemic situations using music and Internet technologies

    The practice of child and adolescent psychiatry: a survey of early-career psychiatrists in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Child and adolescent psychiatry (CAP), a subspecialty of psychiatry in Japan, is facing a serious workforce shortage. To resolve this situation, the Japanese government has organized a task force and has been working to increase psychiatrists' clinical skills to improve care for children and adolescents with mental health problems. Using an online questionnaire system, the authors have conducted a survey to investigate the perceptions, experiences, and interests of early-career psychiatrists in CAP.</p> <p>Methods</p> <p>The subjects of this study were 182 psychiatrists in Japan whose individual clinical experiences did not exceed 15 years. The authors of this study created an online questionnaire system and e-mailed the URL and login password to all subjects. Respondents anonymously answered the questions. Most questions required an answer indicating a level of agreement scored on a nine-point scale. Responding to the questionnaire was considered to constitute consent, and all respondents' privacy was carefully protected.</p> <p>Results</p> <p>The mean age and clinical psychiatric experience of the subjects were found to be 33.1 ± 4.5 years and 5.43 ± 3.5 years, respectively. On a nine-point scale (with nine being the highest), experience and interest in CAP measured 3.05 ± 1.9 and 5.34 ± 2.5, respectively; further, these two factors showed significant correlation (r = 0.437, p < 0.0001). The mean score for the early-career psychiatrists' confidence in their ability to diagnose and appropriately treat was notably low, at 3.13 ± 1.9.</p> <p>Conclusion</p> <p>Our results demonstrated that early-career psychiatrists self-evaluated their CAP clinical experience as insufficient, and these clinicians' CAP experiences and interests correlated significantly. Therefore, in order to improve child and adolescent medical care, we need to expose young psychiatrists to sufficient CAP cases and explore the factors that could attract them to this field.</p

    Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism

    Get PDF
    The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation

    DIA1R Is an X-Linked Gene Related to Deleted In Autism-1

    Get PDF
    Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik

    Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain

    Get PDF
    We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain “connectome” from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS
    corecore