40,465 research outputs found
Novel vortex structures in dipolar condensates
We investigate the properties of single vortices and of vortex lattice in a
rotating dipolar condensate. We show that vortices in this system possess many
novel features induced by the long-range anisotropic dipolar interaction
between particles. For example, when the dipoles are polarized along the
rotation axis, vortices may display a crater-like structure; when dipoles are
polarized orthogonal to the rotation axis, vortex cores takes an elliptical
shape and the vortex lattice no longer possesses hexagonal symmetry.Comment: 4 pages, 5 figure
Quantum interference in dirty d-wave superconductors
The local differential tunneling conductance on a Zn impurity in a disordered
d-wave superconductors is studied. Quantum interference between many impurities
leads to definitive quasiparticle spectra. We suggest that an elaborate
analysis on impurity-induced spectra with quantum interference effect included
may be able to pin down the sign and strength of the scattering potential of a
Zn impurity in low density limit. Numerical simulations calculated with
appropriately determined impurity parameters are in satisfactory agreement with
the observations from scanning tunneling microscopy (STM) experiments even in
subtle details
The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores
We present a new algorithm for identifying dark matter halos, substructure,
and tidal features. The approach is based on adaptive hierarchical refinement
of friends-of-friends groups in six phase-space dimensions and one time
dimension, which allows for robust (grid-independent, shape-independent, and
noise-resilient) tracking of substructure; as such, it is named Rockstar
(Robust Overdensity Calculation using K-Space Topologically Adaptive
Refinement). Our method is massively parallel (up to 10^5 CPUs) and runs on the
largest current simulations (>10^10 particles) with high efficiency (10 CPU
hours and 60 gigabytes of memory required per billion particles analyzed). A
previous paper (Knebe et al 2011) has shown Rockstar to have class-leading
recovery of halo properties; we expand on these comparisons with more tests and
higher-resolution simulations. We show a significant improvement in
substructure recovery as compared to several other halo finders and discuss the
theoretical and practical limits of simulations in this regard. Finally, we
present results which demonstrate conclusively that dark matter halo cores are
not at rest relative to the halo bulk or satellite average velocities and have
coherent velocity offsets across a wide range of halo masses and redshifts. For
massive clusters, these offsets can be up to 350 km/s at z=0 and even higher at
high redshifts. Our implementation is publicly available at
http://code.google.com/p/rockstar .Comment: 20 pages, 14 figures. Minor revisions to match accepted versio
Hole maximum density droplets of an antidot in strong magnetic fields
We investigate a quantum antidot in the integer quantum Hall regime (the
filling factor is two) by using a Hartree-Fock approach and by transforming the
electron antidot into a system which confines holes via an electron-hole
transformation. We find that its ground state is the maximum density droplet of
holes in certain parameter ranges. The competition between electron-electron
interactions and the confinement potential governs the properties of the hole
droplet such as its spin configuration. The ground-state transitions between
the droplets with different spin configurations occur as magnetic field varies.
For a bell-shape antidot containing about 300 holes, the features of the
transitions are in good agreement with the predictions of a recently proposed
capacitive interaction model for antidots as well as recent experimental
observations. We show this agreement by obtaining the parameters of the
capacitive interaction model from the Hartree-Fock results. An inverse
parabolic antidot is also studied. Its ground-state transitions, however,
display different magnetic-field dependence from that of a bell-shape antidot.
Our study demonstrates that the shape of antidot potential affects its physical
properties significantly.Comment: 12 pages, 11 figure
- …