40,465 research outputs found

    Novel vortex structures in dipolar condensates

    Full text link
    We investigate the properties of single vortices and of vortex lattice in a rotating dipolar condensate. We show that vortices in this system possess many novel features induced by the long-range anisotropic dipolar interaction between particles. For example, when the dipoles are polarized along the rotation axis, vortices may display a crater-like structure; when dipoles are polarized orthogonal to the rotation axis, vortex cores takes an elliptical shape and the vortex lattice no longer possesses hexagonal symmetry.Comment: 4 pages, 5 figure

    Quantum interference in dirty d-wave superconductors

    Full text link
    The local differential tunneling conductance on a Zn impurity in a disordered d-wave superconductors is studied. Quantum interference between many impurities leads to definitive quasiparticle spectra. We suggest that an elaborate analysis on impurity-induced spectra with quantum interference effect included may be able to pin down the sign and strength of the scattering potential of a Zn impurity in low density limit. Numerical simulations calculated with appropriately determined impurity parameters are in satisfactory agreement with the observations from scanning tunneling microscopy (STM) experiments even in subtle details

    The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores

    Full text link
    We present a new algorithm for identifying dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure; as such, it is named Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement). Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). A previous paper (Knebe et al 2011) has shown Rockstar to have class-leading recovery of halo properties; we expand on these comparisons with more tests and higher-resolution simulations. We show a significant improvement in substructure recovery as compared to several other halo finders and discuss the theoretical and practical limits of simulations in this regard. Finally, we present results which demonstrate conclusively that dark matter halo cores are not at rest relative to the halo bulk or satellite average velocities and have coherent velocity offsets across a wide range of halo masses and redshifts. For massive clusters, these offsets can be up to 350 km/s at z=0 and even higher at high redshifts. Our implementation is publicly available at http://code.google.com/p/rockstar .Comment: 20 pages, 14 figures. Minor revisions to match accepted versio

    Hole maximum density droplets of an antidot in strong magnetic fields

    Full text link
    We investigate a quantum antidot in the integer quantum Hall regime (the filling factor is two) by using a Hartree-Fock approach and by transforming the electron antidot into a system which confines holes via an electron-hole transformation. We find that its ground state is the maximum density droplet of holes in certain parameter ranges. The competition between electron-electron interactions and the confinement potential governs the properties of the hole droplet such as its spin configuration. The ground-state transitions between the droplets with different spin configurations occur as magnetic field varies. For a bell-shape antidot containing about 300 holes, the features of the transitions are in good agreement with the predictions of a recently proposed capacitive interaction model for antidots as well as recent experimental observations. We show this agreement by obtaining the parameters of the capacitive interaction model from the Hartree-Fock results. An inverse parabolic antidot is also studied. Its ground-state transitions, however, display different magnetic-field dependence from that of a bell-shape antidot. Our study demonstrates that the shape of antidot potential affects its physical properties significantly.Comment: 12 pages, 11 figure
    • …
    corecore