2,501 research outputs found
Informatics: the fuel for pharmacometric analysis
The current informal practice of pharmacometrics as a combination art and science makes it hard to appreciate the role that informatics can and should play in the future of the discipline and to comprehend the gaps that exist because of its absence. The development of pharmacometric informatics has important implications for expediting decision making and for improving the reliability of decisions made in model-based development. We argue that well-defined informatics for pharmacometrics can lead to much needed improvements in the efficiency, effectiveness, and reliability of the pharmacometrics process.
The purpose of this paper is to provide a description of the pervasive yet often poorly appreciated role of informatics in improving the process of data assembly, a critical task in the delivery of pharmacometric analysis results. First, we provide a brief description of the pharmacometric analysis process. Second, we describe the business processes required to create analysis-ready data sets for the pharmacometrician.
Third, we describe selected informatic elements required to support the pharmacometrics and data assembly processes. Finally, we offer specific suggestions for performing a systematic analysis of existing challenges as an approach to defi ning the next generation of pharmacometric informatics
Electromagnetic wave scattering by a superconductor
The interaction between radiation and superconductors is explored in this
paper. In particular, the calculation of a plane standing wave scattered by an
infinite cylindrical superconductor is performed by solving the Helmholtz
equation in cylindrical coordinates. Numerical results computed up to
of Bessel functions are presented for different wavelengths
showing the appearance of a diffraction pattern.Comment: 3 pages, 3 figure
Dispersive Optical Interface Based on Nanofiber-Trapped Atoms
We dispersively interface an ensemble of one thousand atoms trapped in the
evanescent field surrounding a tapered optical nanofiber. This method relies on
the azimuthally-asymmetric coupling of the ensemble with the evanescent field
of an off-resonant probe beam, transmitted through the nanofiber. The resulting
birefringence and dispersion are significant; we observe a phase shift per atom
of \,1\,mrad at a detuning of six times the natural linewidth,
corresponding to an effective resonant optical density per atom of 0.027.
Moreover, we utilize this strong dispersion to non-destructively determine the
number of atoms.Comment: 4 pages, 4 figure
Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber
Trapping and optically interfacing laser-cooled neutral atoms is an essential
requirement for their use in advanced quantum technologies. Here we
simultaneously realize both of these tasks with cesium atoms interacting with a
multi-color evanescent field surrounding an optical nanofiber. The atoms are
localized in a one-dimensional optical lattice about 200 nm above the nanofiber
surface and can be efficiently interrogated with a resonant light field sent
through the nanofiber. Our technique opens the route towards the direct
integration of laser-cooled atomic ensembles within fiber networks, an
important prerequisite for large scale quantum communication schemes. Moreover,
it is ideally suited to the realization of hybrid quantum systems that combine
atoms with, e.g., solid state quantum devices
Cooperative subwavelength molecular quantum emitter arrays
Dipole-coupled subwavelength quantum emitter arrays respond cooperatively to external light fields as they may host collective delocalized excitations (a form of excitons) with super- or subradiant character. Deeply subwavelength separations typically occur in molecular ensembles, where in addition to photon-electron interactions, electron-vibron couplings and vibrational relaxation processes play an important role. We provide analytical and numerical results on the modification of super- and subradiance in molecular rings of dipoles including excitations of the vibrational degrees of freedom. While vibrations are typically considered detrimental to coherent dynamics, we show that molecular dimers or rings can be operated as platforms for the preparation of long-lived dark superposition states aided by vibrational relaxation. In closed ring configurations, we extend previous predictions for the generation of coherent light from ideal quantum emitters to molecular emitters, quantifying the role of vibronic coupling onto the output intensity and coherence
Electromagnetically induced transparency in cold 85Rb atoms trapped in the ground hyperfine F = 2 state
We report electromagnetically induced transparency (EIT) in cold 85Rb atoms,
trapped in the lower hyperfine level F = 2, of the ground state 5
(Tiwari V B \textit{et al} 2008 {\it Phys. Rev.} A {\bf 78} 063421). Two steady
state -type systems of hyperfine energy levels are investigated using
probe transitions into the levels F = 2 and F = 3 of the
excited state 5 in the presence of coupling transitions F = 3
F = 2 and F = 3 F = 3, respectively. The
effects of uncoupled magnetic sublevel transitions and coupling field's Rabi
frequency on the EIT signal from these systems are studied using a simple
theoretical model.Comment: 12 pages, 7 figure
Diffusive transport of light in three-dimensional disordered Voronoi structures
The origin of diffusive transport of light in dry foams is still under
debate. In this paper, we consider the random walks of photons as they are
reflected or transmitted by liquid films according to the rules of ray optics.
The foams are approximately modeled by three-dimensional Voronoi tessellations
with varying degree of disorder. We study two cases: a constant intensity
reflectance and the reflectance of thin films. Especially in the second case,
we find that in the experimentally important regime for the film thicknesses,
the transport-mean-free path does not significantly depend on the topological
and geometrical disorder of the Voronoi foams including the periodic Kelvin
foam. This may indicate that the detailed structure of foams is not crucial for
understanding the diffusive transport of light. Furthermore, our theoretical
values for transport-mean-free path fall in the same range as the experimental
values observed in dry foams. One can therefore argue that liquid films
contribute substantially to the diffusive transport of light in {dry} foams.Comment: 8 pages, 8 figure
- …