55 research outputs found
Transcription factor search for a DNA promoter in a three-states model
To ensure fast gene activation, Transcription Factors (TF) use a mechanism
known as facilitated diffusion to find their DNA promoter site. Here we analyze
such a process where a TF alternates between 3D and 1D diffusion. In the latter
(TF bound to the DNA), the TF further switches between a fast translocation
state dominated by interaction with the DNA backbone, and a slow examination
state where interaction with DNA base pairs is predominant. We derive a new
formula for the mean search time, and show that it is faster and less sensitive
to the binding energy fluctuations compared to the case of a single sliding
state. We find that for an optimal search, the time spent bound to the DNA is
larger compared to the 3D time in the nucleus, in agreement with recent
experimental data. Our results further suggest that modifying switching via
phosphorylation or methylation of the TF or the DNA can efficiently regulate
transcription.Comment: 4 pages, 3 figure
Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons.
In the Drosophila antenna, different subtypes of olfactory receptor neurons (ORNs) housed in the same sensory hair (sensillum) can inhibit each other non-synaptically. However, the mechanisms underlying this underexplored form of lateral inhibition remain unclear. Here we use recordings from pairs of sensilla impaled by the same tungsten electrode to demonstrate that direct electrical ("ephaptic") interactions mediate lateral inhibition between ORNs. Intriguingly, within individual sensilla, we find that ephaptic lateral inhibition is asymmetric such that one ORN exerts greater influence onto its neighbor. Serial block-face scanning electron microscopy of genetically identified ORNs and circuit modeling indicate that asymmetric lateral inhibition reflects a surprisingly simple mechanism: the physically larger ORN in a pair corresponds to the dominant neuron in ephaptic interactions. Thus, morphometric differences between compartmentalized ORNs account for highly specialized inhibitory interactions that govern information processing at the earliest stages of olfactory coding
An ellipsoidal mirror for focusing neutral atomic and molecular beams
Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
An ellipsoidal mirror for focusing neutral atomic and molecular beams
Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
The Thermal Renormalization Group for Fermions, Universality, and the Chiral Phase-Transition
We formulate the thermal renormalization group, an implementation of the
Wilsonian RG in the real-time (CTP) formulation of finite temperature field
theory, for fermionic fields. Using a model with scalar and fermionic degrees
of freedom which should describe the two-flavor chiral phase-transition, we
discuss the mechanism behind fermion decoupling and universality at second
order transitions. It turns out that an effective mass-like term in the fermion
propagator which is due to thermal fluctuations and does not break chiral
symmetry is necessary for fermion decoupling to work. This situation is in
contrast to the high-temperature limit, where the dominance of scalar over
fermionic degrees of freedom is due to the different behavior of the
distribution functions. The mass-like contribution is the leading thermal
effect in the fermionic sector and is missed if a derivative expansion of the
fermionic propagator is performed. We also discuss results on the
phase-transition of the model considered where we find good agreement with
results from other methods.Comment: References added, minor typos correcte
Efficient and long-lived quantum memory with cold atoms inside a ring cavity
Quantum memories are regarded as one of the fundamental building blocks of
linear-optical quantum computation and long-distance quantum communication. A
long standing goal to realize scalable quantum information processing is to
build a long-lived and efficient quantum memory. There have been significant
efforts distributed towards this goal. However, either efficient but
short-lived or long-lived but inefficient quantum memories have been
demonstrated so far. Here we report a high-performance quantum memory in which
long lifetime and high retrieval efficiency meet for the first time. By placing
a ring cavity around an atomic ensemble, employing a pair of clock states,
creating a long-wavelength spin wave, and arranging the setup in the
gravitational direction, we realize a quantum memory with an intrinsic spin
wave to photon conversion efficiency of 73(2)% together with a storage lifetime
of 3.2(1) ms. This realization provides an essential tool towards scalable
linear-optical quantum information processing.Comment: 6 pages, 4 figure
Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs
Bound states of the Hamiltonian describing a quantum particle living on three
dimensional straight strip of width are investigated. We impose the Neumann
boundary condition on the two concentric windows of the radii and
located on the opposite walls and the Dirichlet boundary condition on the
remaining part of the boundary of the strip. We prove that such a system
exhibits discrete eigenvalues below the essential spectrum for any .
When and tend to the infinity, the asymptotic of the eigenvalue is
derived. A comparative analysis with the one-window case reveals that due to
the additional possibility of the regulating energy spectrum the anticrossing
structure builds up as a function of the inner radius with its sharpness
increasing for the larger outer radius. Mathematical and physical
interpretation of the obtained results is presented; namely, it is derived that
the anticrossings are accompanied by the drastic changes of the wave function
localization. Parallels are drawn to the other structures exhibiting similar
phenomena; in particular, it is proved that, contrary to the two-dimensional
geometry, at the critical Neumann radii true bound states exist.Comment: 25 pages, 7 figure
Peptide Bβ15-42 Preserves Endothelial Barrier Function in Shock
Loss of vascular barrier function causes leak of fluid and proteins into tissues, extensive leak leads to shock and death. Barriers are largely formed by endothelial cell-cell contacts built up by VE-cadherin and are under the control of RhoGTPases. Here we show that a natural plasmin digest product of fibrin, peptide Bß15-42 (also called FX06), significantly reduces vascular leak and mortality in animal models for Dengue shock syndrome. The ability of Bß15-42 to preserve endothelial barriers is confirmed in rats i.v.-injected with LPS. In endothelial cells, Bß15-42 prevents thrombin-induced stress fiber formation, myosin light chain phosphorylation and RhoA activation. The molecular key for the protective effect of Bß15-42 is the src kinase Fyn, which associates with VE-cadherin-containing junctions. Following exposure to Bß15-42 Fyn dissociates from VE-cadherin and associates with p190RhoGAP, a known antagonists of RhoA activation. The role of Fyn in transducing effects of Bß15-42 is confirmed in Fyn−/− mice, where the peptide is unable to reduce LPS-induced lung edema, whereas in wild type littermates the peptide significantly reduces leak. Our results demonstrate a novel function for Bß15-42. Formerly mainly considered as a degradation product occurring after fibrin inactivation, it has now to be considered as a signaling molecule. It stabilizes endothelial barriers and thus could be an attractive adjuvant in the treatment of shock
- …