2,414 research outputs found

    Complete controllability of quantum systems

    Get PDF
    Sufficient conditions for complete controllability of NN-level quantum systems subject to a single control pulse that addresses multiple allowed transitions concurrently are established. The results are applied in particular to Morse and harmonic-oscillator systems, as well as some systems with degenerate energy levels. Morse and harmonic oscillators serve as models for molecular bonds, and the standard control approach of using a sequence of frequency-selective pulses to address a single transition at a time is either not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio

    Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects

    Full text link
    Investigations of the magnetic properties of graphenes prepared by different methods reveal that dominant ferromagnetic interactions coexist along with antiferromagnetic interactions in all the samples. Thus, all the graphene samples exhibit room-temperature magnetic hysteresis. The magnetic properties depend on the number of layers and the sample area, small values of both favoring larger magnetization. Molecular charge-transfer affects the magnetic properties of graphene, interaction with a donor molecule such as tetrathiafulvalene having greater effect than an electron-withdrawing molecule such as tetracyanoethyleneComment: 16 pges, 5 figure

    Power spectrum of mass and activity fluctuations in a sandpile

    Full text link
    We consider a directed abelian sandpile on a strip of size 2×n2\times n, driven by adding a grain randomly at the left boundary after every TT time-steps. We establish the exact equivalence of the problem of mass fluctuations in the steady state and the number of zeroes in the ternary-base representation of the position of a random walker on a ring of size 3n3^n. We find that while the fluctuations of mass have a power spectrum that varies as 1/f1/f for frequencies in the range 32nf1/T 3^{-2n} \ll f \ll 1/T, the activity fluctuations in the same frequency range have a power spectrum that is linear in ff.Comment: 8 pages, 10 figure

    Master’s of Science Programs in Information Systems: Match Between the Model Curriculum and Existing Programs

    Get PDF
    In a rapidly changing Information Systems (IS) field, the marketability of students from IS programs is partly related to the responsiveness of the programs to changing market conditions. Thus, curriculum development and periodic finetuning plays a very important role. This paper is an attempt to evaluate the current status of Master’s of Science programs in IS and to study their fit with the recently proposed MSIS 2000 model curriculum. We studied 86 Master’s of Science programs in IS and mapped them onto the proposed curriculum structure. Matches and mismatches with the proposed model curriculum are reported in our results. The results indicate the fit to be somewhat mixed. We have also presented some implications for university administrators and faculty for using the findings of this study and also for further curriculum research

    Quenching of fluorescence of aromatic molecules by graphene due to electron transfer

    Full text link
    Investigations on the fluorescence quenching of graphene have been carried out with two organic donor molecules, pyrene butanaoic acid succinimidyl ester (PyBS, I) and oligo(p-phenylenevinylene) methyl ester (OPV-ester, II). Absorption and photoluminescence spectra of I and II recorded in mixture with increasing the concentrations of graphene showed no change in the former, but remarkable quenching of fluorescence. The property of graphene to quench fluorescence of these aromatic molecules is shown to be associated with photo-induced electron transfer, on the basis of fluorescence decay and time-resolved transient absorption spectroscopic measurements.Comment: 18 pages, 6 figure

    Quantum control without access to the controlling interaction

    Get PDF
    In our model a fixed Hamiltonian acts on the joint Hilbert space of a quantum system and its controller. We show under which conditions measurements, state preparations, and unitary implementations on the system can be performed by quantum operations on the controller only. It turns out that a measurement of the observable A and an implementation of the one-parameter group exp(iAr) can be performed by almost the same sequence of control operations. Furthermore measurement procedures for A+B, for (AB+BA), and for i[A,B] can be constructed from measurements of A and B. This shows that the algebraic structure of the set of observables can be explained by the Lie group structure of the unitary evolutions on the joint Hilbert space of the measuring device and the measured system. A spin chain model with nearest neighborhood coupling shows that the border line between controller and system can be shifted consistently.Comment: 10 pages, Revte

    Deciding Full Branching Time Logic by Program Transformation

    Get PDF
    We present a method based on logic program transformation, for verifying Computation Tree Logic (CTL*) properties of finite state reactive systems. The finite state systems and the CTL* properties we want to verify, are encoded as logic programs on infinite lists. Our verification method consists of two steps. In the first step we transform the logic program that encodes the given system and the given property, into a monadic ω -program, that is, a stratified program defining nullary or unary predicates on infinite lists. This transformation is performed by applying unfold/fold rules that preserve the perfect model of the initial program. In the second step we verify the property of interest by using a proof method for monadic ω-program
    corecore