112,544 research outputs found

    Column size effects of DER fluids

    Full text link
    The static yield stress of dielectric electrorheological(DER) fluids of infinite column state and chain state are calculated from the first principle method. The results indicate that the column surface contributions to ER effects is very small and both states will give correct results to the real DER fluids.Comment: 7 pages, 3 figure

    Coincidences of Dark Energy with Dark Matter -- Clues for a Simple Alternative?

    Full text link
    A rare coincidence of scales in standard particle physics is needed to explain why Λ\Lambda or the negative pressure of cosmological dark energy (DE) coincides with the positive pressure P0P_0 of random motion of dark matter (DM) in bright galaxies. Recently Zlosnik et al. (2007) propose to modify the Einsteinian curvature by adding a non-linear pressure from a medium flowing with a four-velocity vector field UμU^\mu. We propose to check whether a smooth extension of GR with a simple kinetic Lagrangian of UμU^\mu can be constructed, and whether the pressure can bend space-time sufficiently to replace the roles of a w=−1w=-1 DE, w=0w=0 Cold DM and heavy neutrinos in explaining anomalous accelerations at all scales. As a specific proof of concept we find a Vector-for-Λ\Lambda model (VΛ{\mathbf V\Lambda}-model) and its variants. With essentially {\it no free parameters}, these appear broadly consistent with the solar system, gravitational potentials in dwarf spiral galaxies and the bullet cluster of galaxies, early universe with inflation, structure formation and BBN, and late acceleration with a 1:3 ratio of DM:DE.Comment: to appear in ApJ Letters, 4 page

    How Well Do We Know the Beta-Decay of 16N and Oxygen Formation in Helium Burning

    Full text link
    We review the status of the 12C(a,g)16O reaction rate, of importance for stellar processes in a progenitor star prior to a super-nova collapse. Several attempts to constrain the p-wave S-factor of the 12C(a,g)16O reaction at Helium burning temperatures (200 MK) using the beta-delayed alpha-particle emission of 16N have been made, and it is claimed that this S-factor is known, as quoted by the TRIUMF collaboration. In contrast reanalyses (by G.M. hale) of all thus far available data (including the 16N data) does not rule out a small S-factor solution. Furthermore, we improved our previous Yale-UConn study of the beta- delayed alpha-particle emission of \n16 by improving our statistical sample (by more than a factor of 5), improving the energy resolution of the experiment (by 20%), and in understanding our line shape, deduced from measured quantities. Our newly measured spectrum of the beta-delayed alpha-particle emission of 16N is not consistent with the TRIUMF('94) data, but is consistent with the Seattle('95) data, as well as the earlier (unaltered !) data of Mainz('71). The implication of this discrepancies for the extracted astrophysical p-wave s-factor is briefly discussed.Comment: 6 pages, 4 figures, Invited Talk, Physics With Radioactive Beams, Puri, India, Jan. 12-17, 1998, Work Supported by USDOE Grant No. DE-FG02-94ER4087

    Intrinsic electron-doping in nominal "non-doped" superconducting (La,Y)2_2CuO4_4 thin films grown by dc magnetron sputtering

    Full text link
    The superconducting nominal "non-doped" La1.85Y0.15CuO4La_{1.85}Y_{0.15}CuO_4 (LYCO) thin films are successfully prepared by dc magnetron-sputtering and in situ post-annealing in vacuum. The best TC0T_{C0} more than 13K is achieved in the optimal LYCO films with highly pure c-axis oriented T'-type structure. In the normal state, the quasi-quadratic temperature dependence of resistivity, the negative Hall coefficient and effect of oxygen content in the films are quite similar to the typical Ce-doped T'-214 cuprates, suggesting that T'-LYCO shows the electron-doping nature like known n-type cuprates, and is not a band superconductor as proposed previously. The charge carriers are considered to be induced by oxygen deficiency.Comment: 5 pages, 7 figure

    Dynamics of self-organized driven particles with competing range interaction

    Full text link
    Non-equilibrium self-organized patterns formed by particles interacting through competing range interaction are driven over a substrate by an external force. We show that, with increasing driving force, the pre-existed static patterns evolve into dynamic patterns either via disordered phase or depinned patterns, or via the formation of non-equilibrium stripes. Strikingly, the stripes are formed either in the direction of the driving force or in the transverse direction, depending on the pinning strength. The revealed dynamical patterns are summarized in a dynamical phase diagram.Comment: 8 pages, 11 figure

    The necessity of dark matter in MOND within galactic scales

    Full text link
    To further test MOdified Newtonian Dynamics (MOND) on galactic scales -- originally proposed to explain the rotation curves of disk galaxies without dark matter -- we study a sample of six strong gravitational lensing early-type galaxies from the CASTLES database. To determine whether dark matter is present in these galaxies, we compare the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis). We find that strong gravitational lensing on galactic scales requires a significant amount of dark matter, even within MOND. On such scales a 2 eV neutrino cannot explain this excess matter -- in contrast with recent claims to explain the lensing data of the bullet cluster. The presence of dark matter is detected in regions with a higher acceleration than the characteristic MONDian scale of ∼10−10\sim 10^{-10}m/s2^2. This is a serious challenge to MOND unless the proper treatment of lensing is qualitatively different (possibly to be developed within a consistent theory such as TeVeS).Comment: 5 pages, 3 figures, 1 table Amended version to match publication in Phys. Rev. let
    • …
    corecore