743 research outputs found

    Why Color-Flavor Locking is Just like Chiral Symmetry Breaking

    Get PDF
    We review how a classification into representations of color and flavor can be used to understand the possible patterns of symmetry breaking for color superconductivity in dense quark matter. In particular, we show how for three flavors, color-flavor locking is precisely analogous to the usual pattern of chiral symmetry breaking in the QCD vacuum.Comment: 9 pages, Proc. of the Judah Eisenberg Memorial Symposium, 'Nuclear Matter, Hot and Cold', Tel Aviv, April 14 - 16, 199

    Gauge invariance of the color-superconducting gap on the mass shell

    Full text link
    The gap parameter for color superconductivity is expected to be a gauge invariant quantity, at least on the appropriate mass shell. Computing the gap to subleading order in the QCD coupling constant, g, we show that the prefactor of the exponential in 1/g is gauge dependent off the mass shell, and independent of gauge on the mass shell.Comment: 8 pages, Proceedings of the Conference on Statistical QCD, Bielefeld, August 26 - 30, 200

    Color superconductivity in cold, dense quark matter

    Get PDF
    We review what is different and what is similar in a color superconductor as compared to an ordinary BCS superconductor. The parametric dependence of the zero-temperature gap on the coupling constant differs in QCD from that in BCS theory. On the other hand, the transition temperature to the superconducting phase is related to the zero-temperature gap in the same way in QCD as in BCS theory.Comment: 11 pages, 1 figure, proceedings of the "Fifth Workshop on QCD", Villefranche, Jan. 3-7, 200

    Aspects of parity, CP, and time reversal violation in hot QCD

    Full text link
    We discuss various aspects of parity, CP, and time reversal invariances in QCD. In particular, we focus attention on the previously proposed possibility that these experimentally established symmetries of strong interactions may be broken at finite temperature and/or density. This would have dramatic signatures in relativistic heavy ion collisions; we describe some of the most promising signals.Comment: Latex; 14 pages + 3 figs. Talk given at SEWM2000, Marseille, June 14-17 2000 and ISMD2000, Tihany, October 9-15 200

    Damping Rate of a Yukawa Fermion at Finite Temperature

    Full text link
    The damping of a massless fermion coupled to a massless scalar particle at finite temperature is considered using the Braaten-Pisarski resummation technique. First the hard thermal loop diagrams of this theory are extracted and effective Green's functions are constructed. Using these effective Green's functions the damping rate of a soft Yukawa fermion is calculated. This rate provides the most simple example for the damping of a soft particle. To leading order it is proportional to g2Tg^2T, whereas the one of a hard fermion is of higher order.Comment: 5 pages, REVTEX, postscript figures appended, UGI-94-0

    Modification of Z Boson Properties in Quark-Gluon Plasma

    Full text link
    We calculate the change in the effective mass and width of a Z boson in the environment of a quark-gluon plasma under the conditions expected in Pb-Pb collisions at the LHC. The change in width is predicted to be only about 1 MeV at a temperature of 1 GeV, compared to the natural width of 2490±\pm7 MeV. The mass shift is even smaller. Hence no observable effects are to be expected.Comment: 7 pages latex file with 6 embedded PS figure

    Debye screening and Meissner effect in a two-flavor color superconductor

    Full text link
    I compute the gluon self-energy in a color superconductor with two flavors of massless quarks, where condensation of Cooper pairs breaks SU(3)_c to SU(2)_c. At zero temperature, there is neither Debye screening nor a Meissner effect for the three gluons of the unbroken SU(2)_c subgroup. The remaining five gluons attain an electric as well as a magnetic mass. For temperatures approaching the critical temperature for the onset of color superconductivity, or for gluon momenta much larger than the color-superconducting gap, the self-energy assumes the form given by the standard hard-dense loop approximation. The gluon self-energy determines the coefficient of the kinetic term in the effective low-energy theory for the condensate fields.Comment: 29 pages, RevTe

    Numerical solution of the color superconductivity gap in a weak coupling constant

    Get PDF
    We present the numerical solution of the full gap equation in a weak coupling constant gg. It is found that the standard approximations to derive the gap equation to the leading order of coupling constant are essential for a secure numerical evaluation of the logarithmic singularity with a small coupling constant. The approximate integral gap equation with a very small gg should be inverted to a soft integral equation to smooth the logarithmic singularity near the Fermi surface. The full gap equation is solved for a rather large coupling constant g≥2.0g\ge 2.0. The approximate and soft integral gap equations are solved for small gg values. When their solutions are extrapolated to larger gg values, they coincide the full gap equation solution near the Fermi surface. Furthermore, the analytical solution matches the numerical one up to the order one O(1). Our results confirm the previous estimates that the gap energy is of the order tens to 100 MeV for the chemical potential μ≤1000\mu\le 1000 MeV. They also support the validity of leading approximations applied to the full gap equation to derive the soft integral gap equation and its analytical solution near the Fermi surface.Comment: 7 pages+ 6 figs, Stanford, Frankfurt and Bethlehe

    QCD and the Chiral Critical Point

    Full text link
    As an extension of QCDQCD, consider a theory with ``2+12+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a sigma meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCDQCD is (relatively) near to the chiral critical point.Comment: 7 pages + 2 figures, BNL-GGP-
    • …
    corecore