347 research outputs found
Determination of spin Hamiltonian in the Ni magnetic molecule
Magnetic excitations in a Ni magnetic molecule were investigated by
inelastic neutron scattering and bulk susceptibility ()
techniques. The magnetic excitation spectrum obtained from the inelastic
neutron scattering experiments exhibits three modes at energy transfers of
, 1.35, and 1.6 meV. We show that the energy, momentum, and
temperature dependences of the inelastic neutron scattering data and
can be well reproduced by an effective spin Hamiltonian
consisted of intra-molecule exchange interactions, a single-ionic anisotropy,
biquadratic interactions, and Zeeman term. Under a hydrostatic pressure, the
bulk magnetization decreases with increasing pressure, which along with the
biquadratic term indicates spin-lattice coupling present in this system.Comment: 6 pages, 6 figures, and 2 table
Observation of Modulated Quadrupolar Structures in PrPb3
Neutron diffraction measurements have been performed on the cubic compound
PrPb3 in a [001] magnetic field to examine the quadrupolar ordering.
Antiferromagnetic components with q=(1/2+-d 1/2 0), (1/2 1/2+-d 0) (d~1/8) are
observed below the transition temperature TQ (0.4 K at H=0) whose amplitudes
vary linear with H and vanish at zero field, providing the first evidence for a
modulated quadrupolar phase. For H<1 T, a non-square modulated state persists
even below 100 mK suggesting quadrupole moments associated with a Gamma3
doublet ground state to be partially quenched by hybridization with conduction
electrons.Comment: Physical Review Letters, in press. 4 pages, 4 figure
Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration
To clarify a key role of orbitals in the emergence of
antiferro-quadrupole structure in PrPb, we investigate the ground-state
property of an orbital-degenerate Kondo lattice model by numerical
diagonalization techniques. In PrPb, Pr has a
configuration and the crystalline-electric-field ground state is a non-Kramers
doublet . In a - coupling scheme, the state is
described by two local singlets, each of which consists of two electrons
with one in and another in orbitals. Since in a cubic
structure, has localized nature, while orbitals are
rather itinerant, we propose the orbital-degenerate Kondo lattice model for an
effective Hamiltonian of PrPb. We show that an antiferro-orbital state is
favored by the so-called double-exchange mechanism which is characteristic of
multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30,
2007, Kobe
Detailed Measurements of Characteristic Profiles of Magnetic Diffuse Scattering in ErBC
Detailed neutron diffraction measurements on a single crystalline
ErBC were performed. We observed magnetic diffuse scattering which
consists of three components just above the transition temperatures, which is
also observed in characteristic antiferroquadrupolar ordering compounds
HoBC and TbBC. The result of this experiments indicates that
the antiferroquadrupolar interaction is not dominantly important as a origin of
the magnetic diffuse scattering.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTiAl
The cubic compound PrTiAl is a quadrupolar Kondo lattice system
that exhibits quadrupolar ordering due to the non-Kramers ground
doublet and has strong hybridization between and conduction electrons. Our
study using high-purity single crystal reveals that PrTiAl exhibits
type-II superconductivity at mK in the nonmagnetic
ferroquadrupolar state. The superconducting critical temperature and field
phase diagram suggests moderately enhanced effective mass of
Magnetic Phase Diagrams with Possible Field-induced Antiferroquadrupolar Order in TbBC
Magnetic phase diagrams of a tetragonal antiferromagnet TbBC were
clarified by temperature and field dependence of magnetization. It is
noticeable that the N{\'e}el temperature in TbBC is anomalously
enhanced with magnetic fields, in particular the enhancement reaches 13.5 K for
the direction at 10 T. The magnetization processes as well as the
phase diagrams are well interpreted assuming that there appear field-induced
antiferroquadrupolar ordered phases in TbBC. The phase diagrams of the
AFQ compounds in RBC are systematically understood in terms of the
competition with AFQ and AFM interactions.Comment: 4 pages, 4 figures, RevTeX
Itinerant-Electron Magnet of the Pyrochlore Lattice: Indium-Doped YMn2Zn20
We report on a ternary intermetallic compound, "YMn2Zn20", comprising a
pyrochlore lattice made of Mn atoms. A series of In-doped single crystals
undergo no magnetic long-range order down to 0.4 K, in spite of the fact that
the Mn atom carries a local magnetic moment at high temperatures, showing
Curie-Weiss magnetism. However, In-rich crystals exhibit spin-glass transitions
at approximately 10 K due to a disorder arising from the substitution, while,
with decreasing In content, the spin-glass transition temperature is reduced to
1 K. Then, heat capacity divided by temperature approaches a large value of 280
mJ K-2 mol-1, suggesting a significantly large mass enhancement for conduction
electrons. This heavy-fermion-like behavior is not induced by the Kondo effect
as in ordinary f-electron compounds, but by an alternative mechanism related to
the geometrical frustration on the pyrochlore lattice, as in (Y,Sc)Mn2 and
LiV2O4, which may allow spin entropy to survive down to low temperatures and to
couple with conduction electrons.Comment: 5 pages, 4 figures, J. Phys. Soc. Jpn., in pres
Kondo Effects and Multipolar Order in the cubic PrTr2Al20 (Tr=Ti, V)
Our single crystal study reveals that PrTr2Al20 (Tr = Ti and V) provides the
first examples of a cubic {\Gamma}3 nonmagnetic ground doublet system that
shows the Kondo effect including a -ln T dependent resistivity. The {\Gamma}3
quadrupolar moments in PrV2Al20 induce anomalous metallic behavior through
hybridization with conduction electrons, such as T^{1/2} dependent resistivity
and susceptibility below ~ 20 K down to its ordering temperature T_O = 0.6 K.
In PrTi2Al20, however, quadrupoles are well-localized and exhibit an order at
T_O = 2.0 K. Stronger Kondo coupling in PrV2Al20 than in PrTi2Al20 suppresses
quadrupolar ordering, and instead promotes hybridization between the {\Gamma}3
doublet and conduction electrons, leading to most likely the quadrupolar Kondo
effect.Comment: 12 pages, 4 figure
Effects of Impurities with Singlet-Triplet Configuration on Multiband Superconductors
Roles of multipole degrees of freedom in multiband superconductors are
investigated in a case of impurities whose low-lying states consist of singlet
ground and triplet excited states, which is related to the experimental fact
that the transition temperature is increased by Pr substitution for
La in LaOsSb. The most important contribution to the
increase comes from the inelastic interband scattering of electrons coupled to
quadrupole or octupole moments of impurities. It is found that a magnetic field
modifies an effective pairing interaction and the scattering anisotropy appears
in the field-orientation dependence of the upper critical field
in the vicinity of , although a uniaxial anisotropic field is
required for experimental detection. This would be proof that the Pr internal
degrees of freedom are relevant to the stability of superconductivity in
(LaPr)OsSb.Comment: 10 pages, 5 figures, to appear in J. Phys. Soc. Jp
- …
