1,017 research outputs found

    Evolutionary plasticity of developmental gene regulatory network architecture

    Get PDF
    Sea stars and sea urchins evolved from a last common ancestor that lived at the end of the Cambrian, approximately half a billion years ago. In a previous comparative study of the gene regulatory networks (GRNs) that embody the genomic program for embryogenesis in these animals, we discovered an almost perfectly conserved five-gene network subcircuit required for endoderm specification. We show here that the GRN structure upstream and downstream of the conserved network kernel has, by contrast, diverged extensively. Mesoderm specification is accomplished quite differently; the Delta–Notch signaling system is used in radically distinct ways; and various regulatory genes have been coopted to different functions. The conservation of the conserved kernel is thus the more remarkable. The results indicate types of network linkage subject to evolutionary change. An emergent theme is that subcircuit design may be preserved even while the identity of genes performing given roles changes because of alteration in their cis-regulatory control systems

    Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution

    Get PDF
    Of the five echinoderm classes, only the modern sea urchins (euechinoids) generate a precociously specified embryonic micromere lineage that ingresses before gastrulation and then secretes the biomineral embryonic skeleton. The gene regulatory network (GRN) underlying the specification and differentiation of this lineage is now known. Many of the same differentiation genes as are used in the biomineralization of the embryo skeleton are also used to make the similar biomineral of the spines and test plates of the adult body. Here, we determine the components of the regulatory state upstream of these differentiation genes that are shared between embryonic and adult skeletogenesis. An abrupt “break point” in the micromere GRN is thus revealed, on one side of which most of the regulatory genes are used in both, and on the other side of which the regulatory apparatus is entirely micromere-specific. This reveals the specific linkages of the micromere GRN forged in the evolutionary process by which the skeletogenic gene batteries were caused to be activated in the embryonic micromere lineage. We also show, by comparison with adult skeletogenesis in the sea star, a distant echinoderm outgroup, that the regulatory apparatus responsible for driving the skeletogenic differentiation gene batteries is an ancient pleisiomorphic aspect of the echinoderm-specific regulatory heritage

    The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo

    Get PDF
    The genomic cis-regulatory systems controlling regulatory gene expression usually include multiple modules. The regulatory output of such systems at any given time depends on which module is directing the function of the basal transcription apparatus, and ultimately on the transcription factor inputs into that module. Here we examine regulation of the Strongylocentrotus purpuratus tbrain gene, a required activator of the skeletogenic specification state in the lineage descendant from the embryo micromeres. Alternate cis-regulatory modules were found to convey skeletogenic expression in reporter constructs. To determine their relative developmental functions in context, we made use of recombineered BAC constructs containing a GFP reporter and of derivatives from which specific modules had been deleted. The outputs of the various constructs were observed spatially by GFP fluorescence and quantitatively over time by QPCR. In the context of the complete genomic locus, early skeletogenic expression is controlled by an intron enhancer plus a proximal region containing a HesC site as predicted from network analysis. From ingression onward, however, a dedicated distal module utilizing positive Ets1/2 inputs contributes to definitive expression in the skeletogenic mesenchyme. This module also mediates a newly discovered negative Erg input which excludes non-skeletogenic mesodermal expression

    Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring

    Get PDF
    Design features that ensure reproducible and invariant embryonic processes are major characteristics of current gene regulatory network models. New cis-regulatory studies on a gene regulatory network subcircuit activated early in the development of the sea urchin embryo reveal a sequence of encoded “fail-safe” regulatory devices. These ensure the maintenance of fate separation between skeletogenic and nonskeletogenic mesoderm lineages. An unexpected consequence of the network design revealed in the course of these experiments is that it enables the embryo to “recover” from regulatory interference that has catastrophic effects if this feature is disarmed. A reengineered regulatory system inserted into the embryo was used to prove how this system operates in vivo. Genomically encoded backup control circuitry thus provides the mechanism underlying a specific example of the regulative development for which the sea urchin embryo has long been famous

    Effects of High Charge Densities in Multi-GEM Detectors

    Full text link
    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu

    Charge Transfer Properties Through Graphene Layers in Gas Detectors

    Full text link
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.Comment: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference with the 21st Symposium on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, 4 pages, 8 figure

    A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning.

    Get PDF
    Insect gustatory and odorant receptors (GRs and ORs) form a superfamily of novel transmembrane proteins, which are expressed in chemosensory neurons that detect environmental stimuli. Here we identify homologues of GRs (Gustatory receptor-like (Grl) genes) in genomes across Protostomia, Deuterostomia and non-Bilateria. Surprisingly, two Grls in the cnidarian Nematostella vectensis, NvecGrl1 and NvecGrl2, are expressed early in development, in the blastula and gastrula, but not at later stages when a putative chemosensory organ forms. NvecGrl1 transcripts are detected around the aboral pole, considered the equivalent to the head-forming region of Bilateria. Morpholino-mediated knockdown of NvecGrl1 causes developmental patterning defects of this region, leading to animals lacking the apical sensory organ. A deuterostome Grl from the sea urchin Strongylocentrotus purpuratus displays similar patterns of developmental expression. These results reveal an early evolutionary origin of the insect chemosensory receptor family and raise the possibility that their ancestral role was in embryonic development

    Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    Get PDF
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm2^2, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.Comment: 4pages, 3figures, 13th Pisa Meeting on Advanced Detector

    Information processing at the foxa node of the sea urchin endomesoderm specification network

    Get PDF
    The foxa regulatory gene is of central importance for endoderm specification across Bilateria, and this gene lies at an essential node of the well-characterized sea urchin endomesoderm gene regulatory network (GRN). Here we experimentally dissect the cis-regulatory system that controls the complex pattern of foxa expression in these embryos. Four separate cis-regulatory modules (CRMs) cooperate to control foxa expression in different spatial domains of the endomesoderm, and at different times. A detailed mutational analysis revealed the inputs to each of these cis-regulatory modules. The complex and dynamic expression of foxa is regulated by a combination of repressors, a permissive switch, and multiple activators. A mathematical kinetic model was applied to study the dynamic response of foxa cis-regulatory modules to transient inputs. This study shed light on the mesoderm–endoderm fate decision and provides a functional explanation, in terms of the genomic regulatory code, for the spatial and temporal expression of a key developmental control gene
    corecore