100 research outputs found

    The topological structure of 2D disordered cellular systems

    Full text link
    We analyze the structure of two dimensional disordered cellular systems generated by extensive computer simulations. These cellular structures are studied as topological trees rooted on a central cell or as closed shells arranged concentrically around a germ cell. We single out the most significant parameters that characterize statistically the organization of these patterns. Universality and specificity in disordered cellular structures are discussed.Comment: 18 Pages LaTeX, 16 Postscript figure

    A microprocessor-controlled film balance system

    Get PDF

    Genospecies diversity of Lyme disease spirochetes in rodent reservoirs.

    Get PDF
    To determine whether particular Borrelia burgdorferi s.l. genospecies associate solely with rodent reservoir hosts, we compared the genospecies prevalence in questing nymphal Ixodes ticks with that in xenodiagnostic ticks that had fed as larvae on rodents captured in the same site. No genospecies was more prevalent in rodent-fed ticks than in questing ticks. The three main spirochete genospecies, therefore, share common rodent hosts

    Interaction of the 89K murine cytomegalovirus immediate-early protein with core histones

    Get PDF
    The conditions that permit the interaction of immediate-early proteins of murine cytornegalovirus (MCMV) with DNA were studied. Chromatography of extracts from infected cells on MCMV DNA cellulose and calf thymus DNA cellulose showed that pp89, the regulatory major immediate-early protein, interacts with DNA and dissociates at salt concentrations between 0.3 and 0.6 M NaCl. pp76, a cleavage product of pp89, and additional minor ie1 proteins eluted already at low ionic strength. Cellular DNA-binding factors were required for association of pp89 with DNA. These factors were identified as core histones. Chromatography of IE proteins on histone-Sepharose in the absence of DNA revealed a high-binding affinity that was resistant to 2 M NaCl. These results suggest that pp89 has no direct DNA-binding activity. A role for an amino acid sequence homology in the N-terminal region of pp89 with histone H2B in the pp89-histone-DNA Interaction is discussed

    Avalanches of popping bubbles in collapsing foams

    Full text link
    We report acoustic experiments on foam systems. We have recorded the sound emitted by crackling cells during the collapsing of foams. The sound pattern is then analyzed using classical methods of statistical physics. Fundamental processes at the surface of the collapsing foam are found. In particular, size is not a relevant parameter for exploding bubbles.Comment: 8 pages, 4 figures, submitted for publicatio

    Part I. Electric birefringence studies of deoxyribonucleic acids. Part II. Selective dissociation of nucleohistone complexes

    Get PDF
    Part I The electric birefringence of dilute DNA solutions has been studied in considerable detail and on a large number of samples, but no new and reliable information was discovered concerning the tertiary structure of DNA. The large number of variables which effect the birefringence results is discussed and suggestions are made for further work on the subject. The DNA molecules have been aligned in a rapidly alternating (10 to 20 kc/sec) square wave field confirming that the orientation mechanism is that of counterion polarization. A simple empirical relation between the steady state birefringence, Δnst, and the square of the electric field, E, has been found: Δnst = E2/(a E2 + b), where a = 1/Δns and b = (E2/Δnst)E→o. Δns is the birefringence extrapolated to infinite field strength. The molecules show a distribution of relaxation times from 10-4 to 0.2 sec, which is consistent with expectations for flexible coil molecules. The birefringence and the relaxation times decrease with increasing salt concentrations. They also depend on the field strength and pulse duration in a rather non-reproducible manner, which may be due in part to changes in the composition of the solution or in the molecular structure of the DNA (other than denaturation). Further progress depends on the development of some control over these effects. Part II The specificity of the dissociation of reconstituted and native deoxyribonucleohistones (DNH) by monovalent salt solutions has been investigated. A novel zone ultracentrifugation method is used in which the DNH is sedimented as a zone through a preformed salt gradient, superimposed on a stabilizing D2O (sucrose) density gradient. The results, obtained by scanning the quartz sedimentation tubes in a spectrophotometer, were verified by the conventional, preparative sedimentation technique. Procedures are discussed for the detection of microgram quantities of histones, since low concentrations must be used to prevent excessive aggregation of the DNH. The data show that major histone fractions are selectively dissociated from DNH by increasing salt concentrations: Lysine rich histone (H I) dissociates gradually between 0.1 and 0.3 F, slightly lysine rich histone (H II) dissociates as a narrow band between 0.35 and 0.5 F, and arginine rich histone (H III, H IV) dissociates gradually above 0.5 F NaClO4. The activity of the partially dissociated, native DNH in sustaining RNA synthesis, their mobility and their unusual heat denaturation and renaturation behavior are described. The two-step melting behavior of the material indicates that the histones are non-randomly distributed along the DNA, but the implications are that the uncovered regions are not of gene-size length. </p

    Genetic and clinical aspects of Zellweger spectrum patients with PEX1 mutations

    Full text link
    Objective: To analyse the PEX1 gene, the most common cause for peroxisome biogenesis disorders (PBD), in a consecutive series of patients with Zellweger spectrum. Methods: Mutations were detected by different methods including SSCP analyses as a screening technique on the basis of genomic or cDNA, followed by direct sequencing of PCR fragments with an abnormal electrophoresis pattern. Results: 33 patients were studied. Two common mutations, c.2528G→A, G843D and c.2098_2098insT, I700YfsX42, accounted for over 80% of all abnormal PEX1 alleles, emphasising their diagnostic relevance. Most PEX1 mutations were distributed over the two AAA cassettes with the two functional protein domains, D1 and D2, and the highly conserved Walker motifs. Phenotypic severity of Zellweger spectrum in CG1 depended on the effect of the mutation on the PEX1 protein, peroxin 1. PEX1 mutations could be divided into two classes of genotype–phenotype correlation: class I mutations led to residual PEX1 protein levels and function and a milder phenotype; class II mutations almost abolished PEX1 protein levels and function, resulting in a severe phenotype. Compound heterozygote patients for a class I and class II mutation had an intermediate phenotype. Conclusions: Molecular confirmation of the clinical and biochemical diagnosis will allow the prediction of the clinical course of disease in individual PBD cases
    corecore