31 research outputs found

    Angular and energy dependence of ion bombardment of Mo/Si multilayers

    Get PDF
    The process of ion bombardment is investigated for the fabrication of Mo/Si multilayer x-ray mirrors using e-beam evaporation. The ion treatment is applied immediately after deposition of each of the Si layers to smoothen the layers by removing an additional thickness of the Si layer. In this study the parameters of Kr+ ion bombardment have been optimized within the energy range 300 eV-2 keV and an angular range between 20 degrees and 50 degrees. The optical performance of the Mo/Si multilayers is determined by absolute measurements of the near-normal-incidence reflectivity at 14.4 nm wavelength. The multilayer structures are analyzed further with small-angle reflectivity measurements using both specular reflectivity and diffuse x-ray scattering. The optimal smoothening parameters are obtained by determining the effect of ion bombardment on the interface roughness of the Si layer. The optimal conditions are found to be 2 keV at 50 degrees angle of incidence with respect to the surface. These settings result in 47% reflectivity at 85 degrees (lambda = 14.4 nm) for a 16-period Mo/Si multilayer mirror, corresponding to an interface roughness of 0.21 nm rms. Analysis shows that the interface roughness is determined by ion induced viscous flow, an effect which increases with ion energy as well as angle of incidence. In order to determine the effect of intermixing of the Si and Mo atoms, the penetration depth of the Kr+ ions is calculated as a function of ion energy and angle of incidence. Furthermore, the angular dependence of the etch yield, obtained from the in situ reflectivity measurements, is investigated in order o determine the optimal ion beam parameters for the production of multilayer mirrors on curved substrates. (C) 1997 American Institute of Physics

    Regulation of protein synthesis in eukaryotes. Eukaryotic initiation factor eIF-2 and eukaryotic recycling factor eRF from neuroblastoma cells

    No full text
    eIF-2 purified from neuroblastoma cells consists of three subunits, which appear to be of molecular weight identical to those of the subunits of rabbit reticulocyte eIF-2. A protein fraction has been isolated from neuroblastoma cells with characteristics similar to eRF from reticulocytes: stimulation of amino acid incorporation in a hemin-deprived reticulocyte lysate, the removal of GDP from eIF-2-GDP complexes, a 4-5-fold stimulatory effect in a two-step reaction measuring 40 S preinitiation complex formation and a 3-3.5-fold stimulation in the methionyl-puromycin synthesis. In the methionyl-puromycin-synthesizing system phosphorylated eIF-2 is not responsive to the addition of this fraction from neuroblastoma cells. The protein fraction contains eRF which seems to be similar to the eRF isolated from Ehrlich ascites tumor cells and somewhat distinct from the reticulocyte factor. Incubation of neuroblastoma cell lysate in the presence of [gamma-32P]ATP results in the phosphorylation of a protein of Mr 36 000, migrating on SDS-polyacrylamide gels to the position of eIF-2 alpha. This protein is also phosphorylated in vitro by HRI from reticulocytes. These results may reflect a common underlying principle for the quantitative regulation of protein synthesis in eukaryotic cell

    Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation.

    No full text
    Cowpea mosaic virus (CPMV) middle component RNA (M-RNA) encodes two proteins of 105 and 95 kDa, of which translation starts at nucleotide (nt) 161 and nt 512, respectively. In vitro translation of both proteins directed by T7 transcripts of M-RNA was stimulated fourfold by eukaryotic initiation factor 4F (eIF-4F), the cap-binding protein complex. The ratio of the synthesis of both proteins after translation was not influenced by eIF-4F or by any known eIF. Part of the CPMV 5' sequence was cloned downstream of the 5' untranslated region of ornithine decarboxylase (ODC); the latter untranslated sequence has a highly stable secondary structure, preventing efficient translation of ODC. Insertion of nt 161 to 512 of CPMV M-RNA upstream of the ODC initiation codon resulted in a marked increase in ODC translation, which indicates that the CPMV sequence contains an internal ribosome-binding site. The insertion conferred stimulation by eIF-4F on ODC translation, showing that eIF-4F is able to stimulate internal initiation
    corecore