5 research outputs found

    Chapter 3: Pathophysiology

    Get PDF
    The hallmark pathophysiologic feature of dilated cardiomyopathy is systolic dysfunction. Several pathogenetic mechanisms appear to be operative. These include increased hemodynamic overload, ventricular remodeling, excessive neurohumoral stimulation, abnormal myocyte calcium cycling, excessive or inadequate proliferation of the extracellular matrix, accelerated apoptosis, and genetic mutations. Although beneficial in the early stages of heart failure, these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Genetic causes account for 30\u201340% of DCM and involve genes that encode a heterogeneous group of molecules that participate in force generation, force transmission, sarcomere integrity, cytoskeletal and nuclear architecture, electrolyte homeostasis, mitochondrial function, and transcription. Additional research will improve our understanding of the complex and longitudinal molecular changes that lead from gene mutation to clinical expressio

    Cardiac Explant-Derived Cells Are Regulated by Notch-Modulated Mesenchymal Transition

    Get PDF
    Progenitor cell therapy is emerging as a novel treatment for heart failure. However the molecular mechanisms regulating the generation of cardiac progenitor cells is not fully understood. We hypothesized that cardiac progenitor cells are generated from cardiac explant via a process similar to epithelial to mesenchymal transition (EMT).Explant-derived cells were generated from partially digested atrial tissue. After 21 days in culture, c-Kit+ cells were isolated from cell outgrowth. The majority of explant-originated c-Kit+ cells expressed the epicardial marker Wt1. Cardiac cell outgrowth exhibits a temporal up-regulation of EMT-markers. Notch stimulation augmented, while Notch inhibition suppressed, mesenchymal transition in both c-Kit+ and c-Kit- cells. In c-Kit+ cells, Notch stimulation reduced, while Notch inhibition up-regulated pluripotency marker expressions such as Nanog and Sox2. Notch induction was associated with degradation of β-catenin in c-Kit- cells. In contrast, Notch inhibition resulted in β-catenin accumulation, acquisition of epitheloid morphology, and up-regulation of Wnt target genes in c-Kit- cells.Our study suggests that Notch-mediated reversible EMT process is a mechanism that regulates explant-derived c-Kit+ and c-Kit- cells

    Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease

    No full text
    corecore