40 research outputs found
Identification and in vitro Analysis of the GatD/MurT Enzyme-Complex Catalyzing Lipid II Amidation in Staphylococcus aureus
The peptidoglycan of Staphylococcus aureus is characterized by a high degree of crosslinking and almost completely lacks free carboxyl groups, due to amidation of the D-glutamic acid in the stem peptide. Amidation of peptidoglycan has been proposed to play a decisive role in polymerization of cell wall building blocks, correlating with the crosslinking of neighboring peptidoglycan stem peptides. Mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin. We identified the enzymes catalyzing the formation of D-glutamine in position 2 of the stem peptide. We provide biochemical evidence that the reaction is catalyzed by a glutamine amidotransferase-like protein and a Mur ligase homologue, encoded by SA1707 and SA1708, respectively. Both proteins, for which we propose the designation GatD and MurT, are required for amidation and appear to form a physically stable bi-enzyme complex. To investigate the reaction in vitro we purified recombinant GatD and MurT His-tag fusion proteins and their potential substrates, i.e. UDP-MurNAc-pentapeptide, as well as the membrane-bound cell wall precursors lipid I, lipid II and lipid II-Gly5. In vitro amidation occurred with all bactoprenol-bound intermediates, suggesting that in vivo lipid II and/or lipid II-Gly5 may be substrates for GatD/MurT. Inactivation of the GatD active site abolished lipid II amidation. Both, murT and gatD are organized in an operon and are essential genes of S. aureus. BLAST analysis revealed the presence of homologous transcriptional units in a number of gram-positive pathogens, e.g. Mycobacterium tuberculosis, Streptococcus pneumonia and Clostridium perfringens, all known to have a D-iso-glutamine containing PG. A less negatively charged PG reduces susceptibility towards defensins and may play a general role in innate immune signaling
The Actin Associated Protein Palladin Is Important for the Early Smooth Muscle Cell Differentiation
Palladin, an actin associated protein, plays a significant role in regulating cell adhesion and cell motility. Palladin is important for development, as knockdown in mice is embryonic lethal, yet its role in the development of the vasculature is unknown. We have shown that palladin is essential for the expression of smooth muscle cells (SMC) marker genes and force development in response to agonist stimulation in palladin deficient SMCs. The goal of the study was to determine the molecular mechanisms underlying palladin's ability to regulate the expression of SMC marker genes. Results showed that palladin expression was rapidly induced in an A404 cell line upon retinoic acid (RA) induced differentiation. Suppression of palladin expression with siRNAs inhibited the expression of RA induced SMC differentiation genes, SM α-actin (SMA) and SM22, whereas over-expression of palladin induced SMC gene expression. Chromatin immunoprecipitation assays provided evidence that palladin bound to SMC genes, whereas co-immunoprecipitation assays also showed binding of palladin to myocardin related transcription factors (MRTFs). Endogenous palladin was imaged in the nucleus, increased with leptomycin treatment and the carboxyl-termini of palladin co-localized with MRTFs in the nucleus. Results support a model wherein palladin contributes to SMC differentiation through regulation of CArG-SRF-MRTF dependent transcription of SMC marker genes and as previously published, also through actin dynamics. Finally, in E11.5 palladin null mouse embryos, the expression of SMA and SM22 mRNA and protein is decreased in the vessel wall. Taken together, our findings suggest that palladin plays a key role in the differentiation of SMCs in the developing vasculature
Effect of feed starvation on side-stream anammox activity and key microbial populations
Abstract not availablePetra J. Reeve, Irina Mouilleron, Hui-Ping Chuang, Ben Thwaites, Kylie Hyde, Nirmala Dinesh, Joerg Krampe, Tsair-Fuh Lin, Ben van den Akke