203 research outputs found

    Slow decay of dynamical correlation functions for nonequilibrium quantum states

    Full text link
    A property of dynamical correlation functions for nonequilibrium states is discussed. We consider arbitrary dimensional quantum spin systems with local interaction and translationally invariant states with nonvanishing current over them. A correlation function between local charge and local Hamiltonian at different spacetime points is shown to exhibit slow decay.Comment: typos correcte

    Generalized Landau-Pollak Uncertainty Relation

    Full text link
    The Landau-Pollak uncertainty relation treats a pair of rank one projection valued measures and imposes a restriction on their probability distributions. It gives a nontrivial bound for summation of their maximum values. We give a generalization of this bound (weak version of the Landau-Pollak uncertainty relation). Our generalization covers a pair of positive operator valued measures. A nontrivial but slightly weak inequality that can treat an arbitrary number of positive operator valued measures is also presented.Comment: Simplified the proofs. To be published in Phys.Rev.

    No-Cloning Theorem on Quantum Logics

    Full text link
    This paper discusses the no-cloning theorem in a logico-algebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result indicating a relation between cloning on effect algebras and hidden variables.Comment: To appear in J. Math. Phy

    Heisenberg's uncertainty principle for simultaneous measurement of positive-operator-valued measures

    Full text link
    A limitation on simultaneous measurement of two arbitrary positive operator valued measures is discussed. In general, simultaneous measurement of two noncommutative observables is only approximately possible. Following Werner's formulation, we introduce a distance between observables to quantify an accuracy of measurement. We derive an inequality that relates the achievable accuracy with noncommutativity between two observables. As a byproduct a necessary condition for two positive operator valued measures to be simultaneously measurable is obtained.Comment: 7 pages, 1 figure. To appear in Phys. Rev.

    Information-Disturbance Theorem for Mutually Unbiased Observables

    Full text link
    We derive a novel version of information-disturbance theorems for mutually unbiased observables. We show that the information gain by Eve inevitably makes the outcomes by Bob in the conjugate basis not only erroneous but random

    Quantum Kolmogorov Complexity and Quantum Key Distribution

    Full text link
    We discuss the Bennett-Brassard 1984 (BB84) quantum key distribution protocol in the light of quantum algorithmic information. While Shannon's information theory needs a probability to define a notion of information, algorithmic information theory does not need it and can assign a notion of information to an individual object. The program length necessary to describe an object, Kolmogorov complexity, plays the most fundamental role in the theory. In the context of algorithmic information theory, we formulate a security criterion for the quantum key distribution by using the quantum Kolmogorov complexity that was recently defined by Vit\'anyi. We show that a simple BB84 protocol indeed distribute a binary sequence between Alice and Bob that looks almost random for Eve with a probability exponentially close to 1.Comment: typos correcte

    SIMULATION OF LARGE ACCEPTANCE MUON LINAC

    Get PDF
    Abstract There has been a recent need for muon accelerators not only for future Neutrino Factories and Muon Colliders but also for other applications in industry and medical use. We carried out simulations on a large-acceptance muon linac with a new concept "mixed buncher/acceleration". The linac can accept pions/muons from a production target with large acceptance and accelerate muon without any beam cooling which makes the initial section of muon-linac system very compact. The linac has a high impact on Neutrino Factory and Muon Collider (NF/MC) scenario since the 300-m injector section can be replaced by the muon linac of only 10-m length. The current design of the linac consists of the following components: independent 805-MHz cavity structure with 6-or 8-cmradius aperture window; injection of a broad range of pion/muon energies, 10 -100 MeV, and acceleration to 150 -200 MeV. Further acceleration of the muon beam are relatively easy since the beam is already bunched
    corecore