15 research outputs found

    Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst

    Get PDF
    AbstractWe have performed R&D project on methanol synthesis from CO2 and hydrogen in order to contribute to CO2 mitigation. High-performance Cu/ZnO based multicomponent catalysts were developed. The roles of metal oxides contained in Cu/ZnO-based catalysts were classified into two categories: (1) Al2O3 or ZrO2 improves the dispersion of copper particles in the catalyst; (2) Ga2O3 or Cr2O3 increases the activity per unit copper surface area of the catalyst. The long-term stability of Cu/ZnO-based catalysts during methanol synthesis from CO2 and hydrogen was improved by adding a small amount of silica to the catalysts. Silica added to the catalysts suppressed the crystallization of ZnO contained in the catalysts. The catalysts were found to be highly active and extremely stable in methanol synthesis from CO2 and hydrogen. In the next step, a bench plant with a capacity of 50 kg day−1 of CH3OH, which was equipped with facilities for recycling unreacted gases and gaseous products, was successfully operated. The purity of crude methanol produced was 99.9 wt%, whereas the purity of crude methanol produced from syngas in a present-day commercial plant was reported as 99.6 wt%

    Synthesis and analysis of SnO2/ZnO nanocomposites: Structural studies and optical investigations with Maxwell–Garnett model

    No full text
    SnO2 including different concentrations of ZnO has synthesized using spray pyrolysis technique for preparing on glass substrate at 350 °C. Effect of ZnO ratio has been researched to study optical and structural properties of SnO2. X-ray diffraction scheme indicates the presence of different peaks that attribute to a mixture of rutile SnO2 and hexagonal ZnO. The crystallite size of SnO2 decreases as ZnO ratio increases. The synthesized nanocomposites are characterized via field emission-scanning electron microscopy. The reflectance and transmittance in the wavelength range, 200–2500 nm have been measured. The direct band gaps vary from 3.04 to 3.78 eV to show contrary concept to Ubach's energy. The refractive index and extinction coefficient display vibrations due to ZnO ratio effect. Dielectric constants of SnO2 are deduced effectively in terms of ZnO ratio using Maxwell-Garnett ‘s effective medium theory, they are compared with experimental spectra. The optical properties can be interpreted correctly with Maxwell-Garnett theory of small underestimation, indicating that adaptation of optical properties can take place by varying the volume fraction. Our results present good agreement with experimental data. © 2019 Elsevier B.V
    corecore