230 research outputs found

    Path Integral Monte Carlo Simulation of the Low-Density Hydrogen Plasma

    Get PDF
    Restricted path integral Monte Carlo simulations are used to calculate the equilibrium properties of hydrogen in the density and temperature range of 9.83×104ρ0.153gcm39.83 \times 10^{-4}\rm \leq \rho \leq 0.153 \rm gcm^{-3} and 5000T250000K5000 \leq T \leq 250 000 \rm K. We test the accuracy of the pair density matrix and analyze the dependence on the system size, on the time step of the path integral and on the type of nodal surface. We calculate the equation of state and compare with other models for hydrogen valid in this regime. Further, we characterize the state of hydrogen and describe the changes from a plasma to an atomic and molecular liquid by analyzing the pair correlation functions and estimating the number of atoms and molecules present.Comment: 12 pages, 21 figures, submitted for Phys. Rev.

    Hydrogen-Helium Mixtures in the Interiors of Giant Planets

    Full text link
    Equilibrium properties of hydrogen-helium mixtures under conditions similar to the interior of giant gas planets are studied by means of first principle density functional molecular dynamics simulations. We investigate the molecular and atomic fluid phase of hydrogen with and without the presence of helium for densities between ρ=0.19\rho=0.19 g cm3^{-3} and ρ=0.66\rho=0.66 g cm3^{-3} and temperatures from T=500T=500 K to T=8000KT=8000 {K}. Helium has a crucial influence on the ionic and electronic structure of the liquid. Hydrogen molecule bonds are shortened as well as strengthened which leads to more stable hydrogen molecules compared to pure hydrogen for the same thermodynamic conditions. The {\it ab initio} treatment of the mixture enables us to investigate the validity of the widely used linear mixing approximation. We find deviations of up to 8% in energy and volume from linear mixing at constant pressure in the region of molecular dissociation.Comment: 13 pages, 18 figures, submitted to PR

    Hydrogen-Helium Mixtures at High Pressure

    Full text link
    The properties of hydrogen-helium mixtures at high pressure are crucial to address important questions about the interior of Giant planets e.g. whether Jupiter has a rocky core and did it emerge via core accretion? Using path integral Monte Carlo simulations, we study the properties of these mixtures as a function of temperature, density and composition. The equation of state is calculated and compared to chemical models. We probe the accuracy of the ideal mixing approximation commonly used in such models. Finally, we discuss the structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004

    Schubschiffahrt und Elektrotechnik

    Get PDF

    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen

    Get PDF
    A new variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaussians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented.Comment: 26 pages, 13 figures. submitted to Phys. Rev. E, October 199

    Frontiers of the physics of dense plasmas and planetary interiors: experiments, theory, applications

    Full text link
    Recent developments of dynamic x-ray characterization experiments of dense matter are reviewed, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. Several applications of this work are examined. These include the structure of massive "Super Earth" terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as the benchmark for giant planets.Comment: Accepted to Physics of Plasmas special issue. Review from HEDP/HEDLA-08, April 12-15, 200

    Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium

    Full text link
    Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the density-temperature range of 0.387 - 5.35 g/cc and 500 K - 1.28x10^8 K. One coherent equation of state (EOS) is derived by combining DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement between both techniques is found in an intermediate temperature range. For the highest temperatures, the PIMC results converge to the Debye-Hueckel limiting law. In order derive the entropy, a thermodynamically consistent free energy fit is introduced that reproduces the internal energies and pressure derived from the first-principles simulations. The equation of state is presented in form of a table as well as a fit and is compared with chemical models. In addition, the structure of the fluid is analyzed using pair correlation functions. Shock Hugoniot curves are compared with recent laser shock wave experiments.Comment: 16 pages, 15 figure

    Mass-Radius Relationships for Solid Exoplanets

    Full text link
    We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log10Rs=k1+1/3log10(Ms)k2Msk3\log_{10} R_s = k_1 + 1/3 \log_{10}(M_s) - k_2 M_s^{k_3} for up to Mp20MM_p \approx 20 M_{\oplus}, where MsM_s and RsR_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form ρ=ρ0+cPn\rho = \rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with \sim~5% uncertainty water ice planets with 25\gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without.Comment: ApJ, in press, 33 pages including 16 figure

    Modelling of microstructure evolution in advanced high strength steels

    Get PDF
    There is currently a significant development of new families of steels, i.e. advanced high strength steels,in response to the demands of the automotive and construction industries for materials with improved propertycharacteristics. The austenite-ferrite transformation is the key metallurgical tool to tailor the propertiesof steels. The design of processing paths that will lead to the desired microstructures is increasingly been aidedby computer simulations. The present paper illustrates state-of-the-art microstructure modelling approachesfor low carbon steels considering three important processing aspects: (i) run-out table cooling of hot-rolledsteels, (ii) intercritical annealing of cold-rolled sheets, (iii) girth welding of linepipe steels.Phenomenological models based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach incorporatingadditivity are now available to describe phase transformations during run-out table cooling of microalloyedsteels. Strengths and limitations of this approach will be discussed. Process models for intercritical annealingrequire an accurate description of the austenite formation kinetics where morphological complexities can becaptured using the phase field approach. During girth welding the control of the microstructure in the heataffected zone (HAZ) is of paramount importance. The HAZ experiences rapid thermal cycles and steeptemperature gradients. Phase field modelling is an excellent tool to describe the role of these spatialconstraints as will be illustrated for austenite grain growth

    Path integral Monte Carlo simulation of charged particles in traps

    Full text link
    This chapter is devoted to the computation of equilibrium (thermodynamic) properties of quantum systems. In particular, we will be interested in the situation where the interaction between particles is so strong that it cannot be treated as a small perturbation. For weakly coupled systems many efficient theoretical and computational techniques do exist. However, for strongly interacting systems such as nonideal gases or plasmas, strongly correlated electrons and so on, perturbation methods fail and alternative approaches are needed. Among them, an extremely successful one is the Monte Carlo (MC) method which we are going to consider in this chapter.Comment: 18 pages, based on talks on Hareaus school on computational methods, Greifswald, September 200
    corecore