10,833 research outputs found
Hydrodynamic Model for Conductivity in Graphene
Based on the recently developed picture of an electronic ideal relativistic
fluid at the Dirac point, we present an analytical model for the conductivity
in graphene that is able to describe the linear dependence on the carrier
density and the existence of a minimum conductivity. The model treats
impurities as submerged rigid obstacles, forming a disordered medium through
which graphene electrons flow, in close analogy with classical fluid dynamics.
To describe the minimum conductivity, we take into account the additional
carrier density induced by the impurities in the sample. The model, which
predicts the conductivity as a function of the impurity fraction of the sample,
is supported by extensive simulations for different values of , the
dimensionless strength of the electric field, and provides excellent agreement
with experimental data.Comment: 19 pages, 4 figure
Cooling Effect of the Richtmyer-Meshkov Instability
We provide numerical evidence that the Richtmyer-Meshkov (RM) instability
contributes to the cooling of a relativistic fluid. Due to the presence of jet
particles traveling throughout the medium, shock waves are generated in the
form of Mach cones. The interaction of multiple shock waves can trigger the RM
instability, and we have found that this process leads to a down-cooling of the
relativistic fluid. To confirm the cooling effect of the instability, shock
tube Richtmyer-Meshkov instability simulations are performed. Additionally, in
order to provide an experimental observable of the RM instability resulting
from the Mach cone interaction, we measure the two particle correlation
function and highlight the effects of the interaction. The simulations have
been performed with an improved version of the relativistic lattice Boltzmann
model, including general equations of state and external forces.Comment: 10 pages, 6 figure
- …