19 research outputs found

    Nucleation and Growth of TiO2 Nanoparticles

    Get PDF

    Study on the Phase Transformation Kinetics of Sol-Gel Drived TiO

    No full text
    Titanium dioxide nanopowders were synthesized by the diffusion controlled sol-gel process (LaMer model) and characterized by DTA-TG, XRD, and SEM. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks on the base of Avrami equation. The stating point of anatase-rutile phase transformation temperature in the prepared nanoparticles was found between 100 and 200°C. A decreasing trend on the intensity of X-ray peaks of anatase phase was observed up to 600°C when the presence of the rutile phase became predominant. Results indicated that the transition kinetics of the diffusion controlled prepared nanoparticles was begun at low temperature, and it can be concluded that the nucleation and growth sites in these particles were more than other. However, it has been found that the nucleation activation energy of rutile phase was 20 kj/mol, and it is the lowest reported activation energy

    Study on the Phase Transformation Kinetics of Sol-Gel Drived TiO 2 Nanoparticles

    No full text
    Titanium dioxide nanopowders were synthesized by the diffusion controlled sol-gel process (LaMer model) and characterized by DTA-TG, XRD, and SEM. The prepared TiO 2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks on the base of Avrami equation. The stating point of anatase-rutile phase transformation temperature in the prepared nanoparticles was found between 100 and 200 • C. A decreasing trend on the intensity of X-ray peaks of anatase phase was observed up to 600 • C when the presence of the rutile phase became predominant. Results indicated that the transition kinetics of the diffusion controlled prepared nanoparticles was begun at low temperature, and it can be concluded that the nucleation and growth sites in these particles were more than other. However, it has been found that the nucleation activation energy of rutile phase was 20 kj/mol, and it is the lowest reported activation energy

    Compaction of the Groningen Gas Reservoir Sandstone: Discrete Element Modeling Using Microphysically Based Grain-Scale Interaction Laws

    Get PDF
    Reservoir compaction, surface subsidence, and induced seismicity are often associated with prolonged hydrocarbon production. Recent experiments conducted on the Groningen gas field's Slochteren sandstone reservoir rock, at in-situ conditions, have shown that compaction involves both poroelastic strain and time independent, permanent strain, caused by consolidation and shear of clay films coating the sandstone grains, with grain failure occurring at higher stresses. To model compaction of the reservoir in space and time, numerical approaches, such as the Discrete Element Method (DEM), populated with realistic grain-scale mechanisms are needed. We developed a new particle-interaction law (contact model) for classic DEM to explicitly account for the experimentally observed mechanisms of nonlinear elasticity, intergranular clay film deformation, and grain breakage. It was calibrated against both hydrostatic and conventional triaxial compression experiments and validated against an independent set of pore pressure depletion experiments conducted under uniaxial strain conditions, using a range of sample porosities, grain size distributions, and clay contents. The model obtained was used to predict compaction of the Groningen reservoir. These results were compared with field measurements of in-situ compaction and matched favorably, within field measurement uncertainties. The new model allows systematic investigation of the effects of mineralogy, microstructure, boundary conditions, and loading path on compaction behavior of the reservoir. It also offers a means of generating a data bank suitable for developing generalized constitutive models and for predicting reservoir response to different scenarios of gas extraction, or of fluid injection for stabilization or storage purposes

    Compaction of the Groningen Gas Reservoir Sandstone: Discrete Element Modeling Using Microphysically Based Grain-Scale Interaction Laws

    No full text
    Reservoir compaction, surface subsidence, and induced seismicity are often associated with prolonged hydrocarbon production. Recent experiments conducted on the Groningen gas field's Slochteren sandstone reservoir rock, at in-situ conditions, have shown that compaction involves both poroelastic strain and time independent, permanent strain, caused by consolidation and shear of clay films coating the sandstone grains, with grain failure occurring at higher stresses. To model compaction of the reservoir in space and time, numerical approaches, such as the Discrete Element Method (DEM), populated with realistic grain-scale mechanisms are needed. We developed a new particle-interaction law (contact model) for classic DEM to explicitly account for the experimentally observed mechanisms of nonlinear elasticity, intergranular clay film deformation, and grain breakage. It was calibrated against both hydrostatic and conventional triaxial compression experiments and validated against an independent set of pore pressure depletion experiments conducted under uniaxial strain conditions, using a range of sample porosities, grain size distributions, and clay contents. The model obtained was used to predict compaction of the Groningen reservoir. These results were compared with field measurements of in-situ compaction and matched favorably, within field measurement uncertainties. The new model allows systematic investigation of the effects of mineralogy, microstructure, boundary conditions, and loading path on compaction behavior of the reservoir. It also offers a means of generating a data bank suitable for developing generalized constitutive models and for predicting reservoir response to different scenarios of gas extraction, or of fluid injection for stabilization or storage purposes
    corecore