267 research outputs found

    Temporal non-independence of foraging dive and surface duration sequences in the European shag Gulosus aristotelis

    Get PDF
    Studies of foraging behaviour and respiratory physiology in breath-holding divers often assume that each dive cycle (dive plus surface duration) is physiologically and ecologically independent within a series (or "bout ") of sequential dives. We tested this assumption using time depth recorders and GPS data for more than 42,000 dives in 1289 bouts by 39 pairs of male and female European shags (Gulosus aristotelis) provisioning nestlings. We found distinct patterns of temporal autocorrelation over several dives within bouts, but this was driven mainly by consecutive dives of the same type, that is, runs of V-shaped (presumably prey searching) versus U-shaped (presumably active hunting) dives. We found no evidence of cumulative physiological effects (i.e. fatigue and/or lowered body temperature) across dives within a bout. However, within-individual variation in dive behaviour revealed complex interactions. Longer bouts were associated with more V-shaped dives, including more and longer runs of V-shaped dives. Meanwhile, more U-shaped dives and longer runs of U-shaped dives acted as limiting factors to bout lengths, with longer bouts being associated with more U-shaped dives only later in the bout. Interactions between bout length and body mass, and between dive order within the bout and body mass, also suggested various size-specific patterns in the temporal distribution of U-shaped dives. Long bouts and bouts ending in longer runs of V-shaped dives were more likely to indicate the termination of foraging activity. However, neither dive type nor bout length predicted whether individuals subsequently (i) stayed to forage in the same location or (ii) moved to a new location to continue foraging within the same trip from the nest. European shags therefore showed temporal non-independence across successive dive cycles and successive bouts of dives, likely as a result of temporal and spatial variation in prey availabilities rather than cumulative physiological effects that might contravene the assumptions in models of optimal dive behaviour

    Thermochemical conversion of biomass volatiles via chemical looping: Comparison of ilmenite and steel converter waste materials as oxygen carriers

    Get PDF
    Two oxygen carriers were tested with respect to chemical looping combustion (CLC) and chemical looping gasification (CLG). Ilmenite, a natural ore composed mainly of iron–titanium oxide, and LD Slag, an iron-based industrial waste, were investigated at 850 and 900 \ub0C in a continuous operation in a 0.3 kW chemical-looping reactor system using synthetic biomass volatiles as fuel. CLC and CLG conditions were simulated in the fuel reactor by changing the fuel flow rates. In the case of ilmenite the syngas yield and methane conversion increased with fuel flow rate. Consequently, the syngas to hydrocarbon ratio was higher for ilmenite. Methane conversion improved for both tested oxygen carriers with increasing the operating temperature. Oxygen release was observed in the case of LD Slag. The H2/CO ratio was between 0.7 and 0.8 for both oxygen carriers at the higher fuel flows. With respect to CLC, ilmenite showed higher gas conversion than LD slag. Analysis of the particles revealed that ilmenite possessed better mechanical properties and formed less dust compared to LD Slag during the continuous operation with fuel

    Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation

    Get PDF
    The use of naturally occurring ores as oxygen carriers in CLC processes is attractive because of their relative abundance and low cost. Unfortunately, they typically exhibit lower reactivity and lack the mechanical robustness required, when compared to synthetically produced carriers. Impregnation is a suitable method for enhancing both the reactivity and durability of natural ores when used as oxygen carriers for CLC systems. This investigation uses impregnation to improve the chemical and mechanical properties of a Brazilian manganese ore and a Canadian iron ore. The manganese ore was impregnated with Fe2O3 and the iron ore was impregnated with Mn2O3 with the goal of forming a combined Fe/Mn oxygen carrier. The impregnated ore’s physical characteristics were assessed by SEM, BET and XRD analysis. Measurements of the attrition resistance and crushing strength were used to investigate the mechanical robustness of the oxygen carriers. The impregnated ore’s mechanical and physical properties were clearly enhanced by the impregnation method, with boosts in crushing strength of 11–26% and attrition resistance of 37–31% for the impregnated iron and manganese ores, respectively. Both the unmodified and impregnated ore’s reactivity, for the conversion of gaseous fuel (CH4 and syngas) and gaseous oxygen release (CLOU potential) were investigated using a bench-scale quartz fluidised-bed reactor. The impregnated iron ore exhibited a greater degree of syngas conversion compared to the other samples examined. Iron ore based oxygen carrier’s syngas conversion increases with the number of oxidation and reduction cycles performed. The impregnated iron ore exhibited gaseous oxygen release over extended periods in an inert atmosphere and remained at a constant 0.2% O2 concentration by volume at the end of this inert period. This oxygen release would help ensure the efficient use of solid fuels. The impregnated iron ore’s reactivity for CH4 conversion was similar to the reactivity of its unmodified counterpart. The unmodified manganese ore converted CH4 to the greatest extent of all the samples tested here, while the impregnated manganese ore exhibited a decrease in reactivity with respect to syngas and CH4 conversion.EPSR

    Investigation of LD-slag as oxygen carrier for CLC in a 10 kW unit using high-volatile biomasses

    Get PDF
    A steel slag from the Linz-Donawitz process, called LD-slag, having significant calcium and iron-fractions, was investigated as an oxygen carrier in a recently developed 10 kWth chemical-looping combustor with three high-volatile biomass fuels. In order to improve operability, the LD-slag was found to require heat-treatment at high temperatures before being used in the unit. In total, operation with the biomasses was conducted for more than 26 h at temperatures of 870–980 \ub0C. The fuel thermal power was in the range of 3.4–10 kWth. The operation involved chemical looping combustion (CLC), chemical looping gasification (CLG) and oxygen carrier aided combustion (OCAC). Around 12 h was in CLC operation, 13.3 h was conducted in CLG-conditions, while the remaining 0.7 h was OCAC. Here, the results obtained during the CLC part of the campaign is reported. Increased temperature in the fuel reactor and higher airflows to the air reactor both lead to better combustion performance. Steam concentration in the fuel reactor has little effect on the performance. The LD-slag showed higher oxygen demand (31.0%) than that with ilmenite (21.5%) and a manganese ore (19.5%) with the same fuel and normal solids circulation. However, with the LD-slag, there is possibility to achieve a lower oxygen demand (15.2%) with high solids circulation

    Effect of the Mass Conversion Degree of an Oxygen Carrier on Char Conversion and Its Implication for Chemical Looping Gasification

    Get PDF
    Chemical looping gasification (CLG) is an emerging process that aims to produce valuable chemical feedstocks. The key operational requirement of CLG is to limit the oxygen transfer from the air reactor (AR) to the fuel reactor (FR). This can be accomplished by partially oxidizing the oxygen carrier in the AR, which may lead to a higher reduction degree of the oxygen carrier under the fuel conversion. A highly reduced oxygen carrier may experience multiple issues, such as agglomeration and defluidization. Given such an interest, this study examined how the variation of the mass conversion degree of ilmenite may affect the conversion of pine forest residue char in a fluidized bed batch reactor. Ilmenite was pre-reduced using diluted CO and then underwent the char conversion at 850, 900, 950, and 975 degrees C. Our investigations showed that the activation energy of the char conversion was between 194 and 256 kJ/mol, depending upon the mass conversion degree of ilmenite. Furthermore, the hydrogen partial pressure in the particle bed increased as the oxygen carrier mass conversion degree decreased, which was accompanied by a lower reaction rate and a higher reduction potential. Such a hydrogen inhibition effect was confirmed in the experiments; therefore, the change in the mass conversion degree indirectly affected the char conversion. Langmuir-Hinshelwood mechanism models used to evaluate the char conversion were validated. On the basis of the physical observation and characterizations, the use of ilmenite in CLG with biomass char as fuel will likely not suffer from major agglomeration or fluidization issues

    A 100-MHz CMOS wide-band IF amplifier

    Full text link

    Tar characteristics generated from a 10 kWth chemical-looping biomass gasifier using steel converter slag as an oxygen carrier

    Get PDF
    Tar management is one of the key components to achieve high energy efficiency and low operational costs connected to thermal gasification of biomass. Tars contain a significant amount of energy, and unconverted tars result in energy efficiency losses. Also, heavy tars can condense downstream processes, resulting in increased maintenance. Dual fluidized beds for indirect gasification operated with active bed material can be a way to better convert and control the tar generated in the process. Using an active material to transport oxygen in an indirect dual reactor gasification setup is referred to as chemical-looping gasification (CLG). A higher oxidative environment in the gas phase, in addition to possible catalytic sites, could mean lower yields in comparison to normal indirect gasification. This paper investigates the effect of using Steel converter slag (LD slag), a byproduct of steel manufacturing, as an oxygen-carrying bed material on tar species generated in a 10 kWth dual fluidized bed biomass gasifier. The results are compared to the benchmark oxygen carrier ilmenite and conventional silica sand. Three different solid biofuels were used in the reactor system: steam exploded pellets, pine forest residue and straw. Tar was absorbed from the raw syngas using a Solid Phase Adsorption (SPA) column and was analyzed using GC-FID. Bench-scale experiments were also performed to investigate benzene conversion of LD slag and ilmenite at different oxidation levels. The findings of this study suggest that oxygen carriers can be used to decrease the tars generated in a dual fluidized bed system during gasification. Phases in LD slag possess catalytic properties, resulting in a decreased ratio of heavy tar components compared to both ilmenite and sand. Temperature and fuel load showed a significant effect on the tar generation compared to the circulation and steam ratio in this reactor system. Increased temperature generated lower tar yields and lower ratios of heavy tar components for LD slag in contrast to sand

    Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion

    Get PDF
    Finding a suitable oxygen carrier is crucial for the development of Chemical Looping Combustion (CLC). A new manganese ore was tested with different biomass fuels in a recently commissioned 10 kWth unit. The ore maintains the capability of generating O2 gas in N2 after continuous operations with the fuels, however, the concentration was relatively low within 0.45–1.0 vol% at 820 to 975 \ub0C. Influence of temperature, solids circulation and fuel power was examined for different fuels. Temperature increase enhances the carbon capture and reduces the oxygen demand, while the solids circulation and fuel power should be carefully controlled. Using biomass char the oxygen demand can be lowered to 2.6% while the carbon capture was close to 99%. The manganese ore showed a higher reactivity than the often-used ilmenite. Thus, a decrease of 8–10% in oxygen demand was achieved by using the manganese ore in comparison to ilmenite. During the 42 h of hot operation, defluidisation was not observed. Based on the analysis of the 35 fine samples collected, the initial attrition after first hours of operation was high, but gradually decreased to a relatively stable value of 0.27 and 0.12 wt%/h for hot and fuel operations, respectively, corresponding a lifetime of 370–830 h

    Improving bio aviation fuel yield from biogenic carbon sources through electrolysis assisted chemical looping gasification

    Get PDF
    The second-generation bio aviation fuel production via Chemical Looping Gasification (CLG) of biomass combined with downstream Fischer-Tropsch synthesis is a possible way to decarbonize the aviation sector. Although CLG has a higher syngas yield and conversion efficiency compared to the conventional gasification processes, the fraction of biogenic carbon which is converted to biofuel is still low (around 28%). To increase carbon utilization and biofuel yield, incorporation of two types of electrolyzers, Polymer Electrolyte Membrane (PEM) and Molten Carbonate Electrolysis Cell (MCEC), for syngas conditioning has been investigated. Full chain process models have been developed using an experimentally validated CLG model in Aspen Plus for Iron sand as an oxygen carrier. Techno-economic parameters were calculated and compared for different cases. The results show that syngas conditioning with sustainable hydrogen from PEM and MCEC electrolyzers results in up to 11.5% higher conversion efficiency and up to 8.1 % higher biogenic carbon efficiencies in comparison to the syngas conditioning with water gas shift reactor. The study shows that the lowest carbon capture rates are found in the configurations with the highest biogenic carbon efficiency which means up to 14% more carbon ends up in FT crude compared to the case with conventional WGS conditioning. Techno-economic analysis indicates that syngas conditioning using PEM and MCEC electrolyzers would result in an increase of the annual profit by a factor of 1.4 and 1.7, respectively, when compared to using only WGS reactors

    Experimental evaluation of manganese ores for chemical looping conversion of synthetic biomass volatiles in a 300 W reactor system

    Get PDF
    Two manganese ores with different iron content were investigated as oxygen carriers for chemical looping conversion of simulated biomass volatiles. The aim was to study the performance of the oxygen carriers with regards to combustion and potential use for chemical-looping gasification of wood-based biomass. The oxygen carriers were studied in a 300 W chemical-looping reactor system with circulation of oxygen carriers between the fluidized air and fuel reactors. The temperature was 850-900 \ub0C and the fuel flow rates were 0.6-3 Lmin-1. The Mn ore with higher iron content showed significant oxygen release at 900 \ub0C under inert conditions, as well as full conversion of CO, H2 and methane at low fuel flow. The other Mn ore showed little methane conversion and poorer conversion of the other gases when compared at similar fuel flows. However, the gas composition attained was rather similar if compared for a similar overall gas conversion. Nonetheless, a slightly higher syngas fraction and H2 to CO ratio in the product stream was obtained with the Mn ore with lower iron content. In all cases the syngas fraction in the product gas increased with temperature and fuel flow. The formation of fines (attrition rate), particle size distribution, and the bulk density of the oxygen carriers were measured to evaluate their mechanical properties during chemical looping of biomass volatiles
    • …
    corecore