13,325 research outputs found

    Time-Dependent Dynamics of the Bose-Fermi Mixed Condensed System

    Full text link
    We study the monopole oscillation in the bose-fermi mixed condensed system by performing the time-dependent Gross-Pitaevsky (GP) and Vlasov equations. We find that the big damping exists for the fermion oscillation in the mixed system even at zero temperatureComment: 5pages, 2 figure

    Nonequilibrium Green's Function Approach to Phonon Transport in Defective Carbon Nanotubes

    Full text link
    We have developed a new theoretical formalism for phonon transport in nanostructures using the nonequilibrium phonon Green's function technique and have applied it to thermal conduction in defective carbon nanotubes. The universal quantization of low-temperature thermal conductance in carbon nanotubes can be observed even in the presence of local structural defects such as vacancies and Stone-Wales defects, since the long wavelength acoustic phonons are not scattered by local defects. At room temperature, however, thermal conductance is critically affected by defect scattering since incident phonons are scattered by localized phonons around the defects. We find a remarkable change from quantum to classical features for the thermal transport through defective CNTs with increasing temperature.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Superconductivity without Local Inversion Symmetry; Multi-layer Systems

    Full text link
    While multi-layer systems can possess global inversion centers, they can have regions with locally broken inversion symmetry. This can modify the superconducting properties of such a system. Here we analyze two dimensional multi-layer systems yielding spatially modulated antisymmetric spin-orbit coupling (ASOC) and discuss superconductivity with mixed parity order parameters. In particular, the influence of ASOC on the spin susceptibility is investigated at zero temperature. For weak inter-layer coupling we find an enhanced spin susceptibility induced by ASOC, which hints the potential importance of this aspect for superconducting phase in specially structured superlattices.Comment: 4 pages, 2 figures, proceedings of the 26th International Conference on Low Temperature Physics (LT26

    ZQZ_Q Topological Invariants for Polyacetylene, Kagome and Pyrochlore lattices

    Get PDF
    Adiabatic ZQZ_Q invariants by quantized Berry phases are defined for gapped electronic systems in dd-dimensions (Q=d+1Q=d+1). This series includes Polyacetylene, Kagome and Pyrochlore lattice respectively for d=1,2d=1,2 and 3. The invariants are quantum QQ-multimer order parameters to characterize the topological phase transitions by the multimerization. This fractional quantization is protected by the global ZQZ_Q equivalence. As for the chiral symmetric case, a topological form of the Z2Z_2-invariant is explicitly given as well.Comment: 4 pgages, 4 figure

    An online handwritten music symbol recognition system

    Get PDF
    The original publication is available at www.springerlink.comArticleINTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION. 9(1): 49-58 (2007)journal articl

    Isoscalar Giant Quadrupole Resonance State in the Relativistic Approach with the Momentum-Dependent Self-Energies

    Get PDF
    We study the excited energy of the isoscalar giant quadrupole resonance with the scaling method in the relativistic many-body framework. In this calculation we introduce the momentum-dependent parts of the Dirac self-energies arising from the one-pion exchange on the assumption of the pseudo-vector coupling with nucleon field. It is shown that this momentum-dependence enhances the Landau mass significantly and thus suppresses the quadrupole resonance energy even giving the small Dirac effective mass which causes a problem in the momentum-independent mean-field theory.Comment: 12pages, 2 Postscript figure

    Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme

    Get PDF
    peer-reviewedNumerous casein and whey protein-derived angiotensin-I-converting enzyme (ACE) inhibitory peptides/hydrolysates have been identified. Clinical trials in hypertensive animals and humans show that these peptides/hydrolysates can bring about a significant reduction in hypertension. These peptides/hydrolysates may be classified as functional food ingredients and nutraceuticals due to their ability to provide health benefits i.e. as functional food ingredients in reducing the risk of developing a disease and as nutraceuticals in the prevention/treatment of disease

    Noise-induced behaviors in neural mean field dynamics

    Full text link
    The collective behavior of cortical neurons is strongly affected by the presence of noise at the level of individual cells. In order to study these phenomena in large-scale assemblies of neurons, we consider networks of firing-rate neurons with linear intrinsic dynamics and nonlinear coupling, belonging to a few types of cell populations and receiving noisy currents. Asymptotic equations as the number of neurons tends to infinity (mean field equations) are rigorously derived based on a probabilistic approach. These equations are implicit on the probability distribution of the solutions which generally makes their direct analysis difficult. However, in our case, the solutions are Gaussian, and their moments satisfy a closed system of nonlinear ordinary differential equations (ODEs), which are much easier to study than the original stochastic network equations, and the statistics of the empirical process uniformly converge towards the solutions of these ODEs. Based on this description, we analytically and numerically study the influence of noise on the collective behaviors, and compare these asymptotic regimes to simulations of the network. We observe that the mean field equations provide an accurate description of the solutions of the network equations for network sizes as small as a few hundreds of neurons. In particular, we observe that the level of noise in the system qualitatively modifies its collective behavior, producing for instance synchronized oscillations of the whole network, desynchronization of oscillating regimes, and stabilization or destabilization of stationary solutions. These results shed a new light on the role of noise in shaping collective dynamics of neurons, and gives us clues for understanding similar phenomena observed in biological networks
    • …
    corecore