7,855 research outputs found

    Where is the pseudoscalar glueball ?

    Full text link
    The pseudoscalar mesons with the masses higher than 1 GeV are assumed to belong to the meson decuplet including the glueball as the basis state supplementing the standard SU(3)FSU(3)_F nonet of light qqˉq\bar{q} states (u,d,s)(u,d,s). The decuplet is investigated by means of an algebraic approach based on hypothesis of vanishing the exotic SU(3)FSU(3)_F commutators of "charges" and their time derivatives. These commutators result in a system of equations determining contents of the isoscalar octet state in the physical isoscalar mesons as well as the mass formula including all masses of the decuplet: π(1300)\pi(1300), K(1460), η(1295)\eta(1295), η(1405)\eta(1405) and η(1475)\eta(1475). The physical isoscalar mesons ηi\eta_i, are expressed as superpositions of the "ideal" qqˉq\bar{q} states (NN and SS) and the glueball GG with the mixing coefficient matrix following from the exotic commutator restrictions. Among four one-parameter families of the calculated mixing matrix (numerous solutions result from bad quality of data on the π(1300)\pi(1300) and K(1460) masses) there is one family attributing the glueball-dominant composition to the η(1405)\eta(1405) meson. Similarity between the pseudoscalar and scalar decuplets, analogy between the whole spectra of the 0−+0^{-+} and 0++0^{++} mesons and affinity of the glueball with excited qqˉq\bar{q} states are also noticed.Comment: 18 pp., 2. figs., 2 tabs.; Published version. One of the authors withdraws his nam

    Local dielectric spectroscopy of near-surface glassy polymer dynamics

    Full text link
    A non-contact scanning-probe-microscopy method was used to probe local near-surface dielectric susceptibility and dielectric relaxation in poly-vinyl-acetate (PVAc) near the glass transition. Dielectric spectra were measured from 10-4 Hz to 102 Hz as a function of temperature. The measurements probed a 20 nm thick layer below the free-surface of a bulk film. A small (4 K) reduction in glass transition temperature and moderate narrowing of the distribution of relaxation times was found. In contrast to results for ultra-thin-films confined on or between metallic electrodes, no reduction in the dielectric strength was found, inconsistent with the immobilization of slower modes.Comment: submitte

    Measurement of the Scintillation Efficiency of Na Recoils in NaI(Tl) down to 10 keV Nuclear Recoil Energy relevant to Dark Matter Searches

    Full text link
    We present preliminary results of measurements of the quenching factor for Na recoils in NaI(Tl) at room temperature, made at a dedicated neutron facility at the University of Sheffield. Measurements have been performed with a 2.45 MeV mono-energetic neutron generator in the energy range from 10 keV to 100 keV nuclear recoil energy. A BC501A liquid scintillator detector was used to tag neutrons. Cuts on pulse-shape discrimination from the BC501A liquid scintillator detector and neutron time-of-flight were performed on pulses recorded by a digitizer with a 2 ns sampling time. Measured quenching factors range from 19% to 26%, in agreement with other experiments. From pulse-shape analysis, a mean time of pulses from electron and nuclear recoils are compared down to 2 keV electron equivalent energy.Comment: to appear in Proc. 6th Int. Workshop on the Identification of Dark Matter, 11-16 September 2006, Rhodes, Greece; 6 pages, 4 figures; corrected preliminary theoretical estimation curve plotted in figure

    The Dog on the Ship: The "Canis Major Dwarf Galaxy" as an Outlying Part of the Argo Star System

    Full text link
    Overdensities in the distribution of low latitude, 2MASS giant stars are revealed by systematically peeling away from sky maps the bulk of the giant stars conforming to ``isotropic'' density laws generally accounting for known Milky Way components. This procedure, combined with a higher resolution treatment of the sky density of both giants and dust allows us to probe to lower Galactic latitudes than previous 2MASS giant star studies. While the results show the swath of excess giants previously associated with the Monoceros ring system in the second and third Galactic quadrants at distances of 6-20 kpc, we also find a several times larger overdensity of giants in the same distance range concentrated in the direction of the ancient constellation Argo. Isodensity contours of the large structure suggest that it is highly elongated and inclined by about 3 deg to the disk, although details of the structure -- including the actual location of highest density, overall extent, true shape -- and its origin, remain unknown because only a fraction of it lies outside highly dust-obscured, low latitude regions. Nevertheless, our results suggest that the 2MASS M giant overdensity previously claimed to represent the core of a dwarf galaxy in Canis Major (l ~ 240 deg) is an artifact of a dust extinction window opening to the overall density rise to the more significant Argo structure centered at larger longitude (l ~ 290 +- 10 deg, b ~ -4 +- 2 deg).Comment: 4 pages, 4 figure

    On non-completely positive quantum dynamical maps on spin chains

    Full text link
    The new arguments based on Majorana fermions indicating that non-completely positive maps can describe open quantum evolution are presented.Comment: published; small change

    Constraining the History of the Sagittarius Dwarf Galaxy Using Observations of its Tidal Debris

    Get PDF
    We present a comparison of semi-analytic models of the phase-space structure of tidal debris with observations of stars associated with the Sagittarius dwarf galaxy (Sgr). We find that many features in the data can be explained by these models. The properties of stars 10-15 degrees away from the center of Sgr --- in particular, the orientation of material perpendicular to Sgr's orbit (c.f. Alard 1996) and the kink in the velocity gradient (Ibata et al 1997) --- are consistent with those expected for unbound material stripped during the most recent pericentric passage ~50 Myrs ago. The break in the slope of the surface density seen by Mateo, Olszewski & Morrison (1998) at ~ b=-35 can be understood as marking the end of this material. However, the detections beyond this point are unlikely to represent debris in a trailing streamer, torn from Sgr during the immediately preceding passage ~0.7 Gyrs ago, but are more plausibly explained by a leading streamer of material that was lost more that 1 Gyr ago and has wrapped all the way around the Galaxy. The observations reported in Majewski et al (1999) also support this hypothesis. We determine debris models with these properties on orbits that are consistent with the currently known positions and velocities of Sgr in Galactic potentials with halo components that have circular velocities v_circ=140-200 km/s. The best match to the data is obtained in models where Sgr currently has a mass of ~10^9 M_sun and has orbited the Galaxy for at least the last 1 Gyr, during which time it has reduced its mass by a factor of 2-3, or luminosity by an amount equivalent to ~10% of the total luminosity of the Galactic halo. These numbers suggest that Sgr is rapidly disrupting and unlikely to survive beyond a few more pericentric passages.Comment: 19 pages, 5 figures, accepted to Astronomical Journa
    • …
    corecore