77 research outputs found
Enhancing synthetic lethality of PARP-inhibitor and cisplatin in BRCA-proficient tumour cells with hyperthermia
Background: Poly-(ADP-ribose)-polymerase1 (PARP1) is involved in repair of DNA single strand breaks. PARP1-inhibitors (PARP1-i) cause an accumulation of DNA double strand breaks, which are generally repaired by homologous recombination (HR). Therefore, cancer cells harboring HR deficiencies are exceptionally sensitive to PARP1-i. For patients with HR-proficient tumors, HR can be temporarily inhibited by hyperthermia, thereby inducing synthetic lethal conditions in every tumor type. Since cisplatin is successfully used combined with hyperthermia (thermochemotherapy), we investigated the effectiveness of combining PARP1-i with thermochemotherapy. Results: The in vitro data demonstrate a decreased in cell survival after addition of PARP1-i to thermochemotherapy, which can be explained by increased DNA damage induction and less DSB repair. These in vitro findings are in line with in vivo model, in which a decreased tumor growth is observed upon addition of PARP1-i. Materials and Methods: Survival of three HR-proficient cell lines after cisplatin, hyperthermia and/or PARP1-i was studied. Cell cycle analyses, quantification of γ-H2AX foci and apoptotic assays were performed to understand these survival data. The effects of treatments were further evaluated by monitoring tumor responses in an in vivo rat model. Conclusions: Our results in HR-proficient cell lines suggest that PARP1-i combined with thermochemotherapy can be a promising clinical approach for all tumors independent of HR status
Sensitizing thermochemotherapy with a PARP1-inhibitor
Cis-diamminedichloroplatinum(II) (cisplatin, cDDP) is an effective chemotherapeutic agent that induces DNA double strand breaks (DSBs), primarily in replicating cells. Generally, such DSBs can be repaired by the classical or backup non-homologous end joining (c-NHEJ/b-NHEJ) or homologous recombination (HR). Therefore, inhibiting these pathways in cancer cells should enhance the efficiency of cDDP treatments. Indeed, inhibition of HR by hyperthermia (HT) sensitizes cancer cells to cDDP and in the Netherlands this combination is a standard treatment option for recurrent cervical cancer after previous radiotherapy. Additionally, cDDP has been demonstrated to disrupt c-NHEJ, which likely further increases the treatment efficacy. However, if one of these pathways is blocked, DSB repair functions can be sustained by the Poly-(ADP-ribose)-polymerase1 (PARP1)-dependent b-NHEJ. Therefore, disabling b-NHEJ should, in principle, further inhibit the repair of cDDP-induced DNA lesions and enhance the toxicity of thermochemotherapy. To explore this hypothesis, we treated a panel of cancer cell lines with HT, cDDP and a PARP1-i and measured various end-point relevant in cancer treatment. Our results demonstrate that PARP1-i does not considerably increase the efficacy of HT combined with standard, commonly used cDDP concentrations. However, in the presence of a PARP1-i, ten-fold lower concentration of cDDP can be used to induce similar cytotoxic effects. PARP1 inhibition may thus permit a substantial lowering of cDDP concentrations without diminishing treatment efficacy, potentially reducing systemic side effects
Elevated temperatures and longer durations improve the efficacy of oxaliplatin- and mitomycin C-based hyperthermic intraperitoneal chemotherapy in a confirmed rat model for peritoneal metastasis of colorectal cancer origin
Introduction: In patients with limited peritoneal metastasis (PM) originating from colorectal cancer, cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a potentially curative treatment option. This combined treatment modality using HIPEC with mitomycin C (MMC) for 90 minutes proved to be superior to systemic chemotherapy alone, but no benefit of adding HIPEC to CRS alone was shown using oxaliplatin-based HIPEC during 30 minutes. We investigated the impact of treatment temperature and duration as relevant HIPEC parameters for these two chemotherapeutic agents in representative preclinical models. The temperature- and duration- dependent efficacy for both oxaliplatin and MMC was evaluated in an in vitro setting and in a representative animal model. Methods: In 130 WAG/Rij rats, PM were established through i.p. injections of rat CC-531 colon carcinoma cells with a signature similar to the dominant treatment-resistant CMS4 type human colorectal PM. Tumor growth was monitored twice per week using ultrasound, and HIPEC was applied when most tumors were 4-6 mm. A semi-open four-inflow HIPEC setup was used to circulate oxaliplatin or MMC through the peritoneum for 30, 60 or 90 minutes with inflow temperatures of 38°C or 42°C to achieve temperatures in the peritoneum of 37°C or 41°C. Tumors, healthy tissue and blood were collected directly or 48 hours after treatment to assess the platinum uptake, level of apoptosis and proliferation and to determine the healthy tissue toxicity. Results: In vitro results show a temperature- and duration- dependent efficacy for both oxaliplatin and MMC in both CC-531 cells and organoids. Temperature distribution throughout the peritoneum of the rats was stable with normothermic and hyperthermic average temperatures in the peritoneum ranging from 36.95-37.63°C and 40.51-41.37°C, respectively. Treatments resulted in minimal body weight decrease (<10%) and only 7/130 rats did not reach the endpoint of 48 hours after treatment. Conclusions: Both elevated temperatures and longer treatment duration resulted in a higher platinum uptake, significantly increased apoptosis and lower proliferation in PM tumor lesions, without enhanced normal tissue toxicity. Our results demonstrated that oxaliplatin- and MMC-based HIPEC procedures are both temperature- and duration-dependent in an in vivo tumor model.</p
Cyclopentenyl cytosine increases gemcitabine radiosensitisation in human pancreatic cancer cells
The deoxycytidine analogue 2′,2′-difluoro-2′-deoxycytidine (dFdC, gemcitabine) is a potent radiosensitiser, but has limited efficacy in combination with radiotherapy in patients with pancreatic cancer due to acute toxicity. We investigated whether cyclopentenyl cytosine (CPEC), targetting the ‘de novo' biosynthesis of cytidine triphosphate (CTP), could increase dFdC cytotoxicity alone or in combination with irradiation in a panel of human pancreatic cancer cells (Panc-1, Miapaca-2, BxPC-3). To investigate the role of deoxycytidine kinase (dCK), the rate-limiting enzyme in the activation of dFdC, human lung cancer cells without (dFdC-resistant SWg) and with an intact dCK gene (dFdC-sensitive SWp) were included. We found that CPEC (100–1000 nmol l−1) specifically reduced CTP levels in a dose-dependent manner that lasted up to 72 h in all cell lines. Preincubation with CPEC resulted in a dose-dependent increase in dFdC incorporated into the DNA only in dFdC-sensitive cells. Consequently, CPEC increased the effectiveness of dFdC (300 nmol l−1 for 4 h) only in dFdC-sensitive cells, which was accompanied by an increase in apoptosis. We also found that CPEC enhanced the radiosensitivity of cells treated with dFdC (30–300 nmol l−1 for 4 h). These results indicate that CPEC enhances the cytotoxicity of dFdC alone and in combination with irradiation in several human tumour cell lines with an intact dCK gene
Cytokine production after whole body and localized hyperthermia
The levels of TNF, IL-1 and IL-6 in circulating blood female WAG/Ry rats were assessed in relation to treatment with localized hyperthermia of the right hind leg or with whole-body hyperthermia (WBH). After a localized treatment for 30 min at 43 or 44 degrees C no detectable increase in levels of IL-6 or TNF was obtained. Hyperthermia for 30 min at 45 degrees C led to an elevated level of IL-6 of 19.4 +/- 5.2 U/ml above the control level of 24 h after treatment. Levels of IL-1 were never higher than those in control animals that received only anaesthesia. Anaesthesia induced a peak level of approximately 131 U/ml IL-1 6 h after treatment. Serum levels of IL-1 and IL-6 are enhanced after WBH. IL-1 reaches a peak level already during WBH about 15 after reaching 41.5 degrees C. IL-6 levels were not enhanced during WBH but 1 h after WBH a clear peak was observed. Anaesthesia with sham WBH did not lead to enhanced IL-6 levels but enhanced IL-1 levels were clearly detected. We did not detect TNF in any sample after WBH. It is concluded from the present results that IL-6 is not induced by a 'standard' treatment of localized hyperthermia as used in oncotherapy (i.e. 60 min at 43 degrees C) to such a high level locally that this is reflected in increased levels in circulating blood. WBH at clinically relevant temperatures leads to enhanced levels of IL-1 and IL-6. The difference in IL-6 response after WBH or localized hyperthermia probably is related to the fact that in WBH also the bone marrow is treated. This may lead to stimulation of this important stem cell compartment of the peripheral blood. The sequence of appearance of IL-1 and IL-6 after hyperthermia is akin to the sequence in an inflammatory response. However, the experiments with sham treatment show that IL-1 may appear in the circulating blood not followed by IL-6. These results indicate that enhanced IL-1 levels may reflect a stress reaction of the animal related to the (sham) treatment. Enhanced levels of IL-1 after WBH correlate with enhanced levels of ACTH in the circulating bloo
TNF, IL-1 and IL-6 in circulating blood after total-body and localized irradiation in rats.
The levels of TNF, IL-1 and IL-6 in circulating blood of female WAG/Rij rats were assessed both after total-body irradiation (TBI) and localized irradiation of the right hind leg. The results show that enhanced levels of IL-1 in the circulation reflect a stress situation presumably resulting from handling and halothane anesthesia of the animal. Neither localized irradiation nor TBI resulted in further enhanced levels of IL-1. Both TBI and localized irradiation, lead to a small but significant increase in IL-6 levels in serum from circulating blood. After TBI this increase dissipated rapidly, 24 h after TBI increased levels are not found. After localized irradiation IL-6 levels remain elevated for a longer period. Still two weeks after irradiation, the longest time investigated, increased levels were observed. We did not observe increased TNF levels after localized irradiation or after TB
Effects of hyperthermia on the rat bladder: a pre-clinical study on thermometry and functional damage after treatment
The rat bladder was heated using a microwave applicator which was equipped with a system of circulating deionized water. The applicator was operated at 434 MHz and was placed at the ventral side with the rats in supine position. Temperatures in the bladder and adjacent were monitored using thermocouples with single or multiple sensors. One thermocouple located most centrally in the bladder served as reference. The rats were treated at intravesical reference temperature of 41, 42, 43, 44 and 45 degreesC for 1 h. The heating time to reach the reference temperature was similar to5 min. Temperatures inside the bladder varied within 0.5degreesC from the reference value, while the temperatures in the urethra were similar to1.0 degreesC lower. At the left and the right side of the outer bladder wall, temperatures were similar to0.5 degreesC lower than the reference value, while the temperature on the dorsal and ventral sides of the bladder wall were 1.0-1.5 degreesC lower. In the rectum, located in the treatment field, the temperature reached 39.1, 40.5, 42.4 and 42.5 degreesC 1 h of hyperthermia at intravesical reference temperatures of 41, 42, 43, 44 and 45 degreesC respectively. Body core temperature measured in the esophagus behind the pericardium never exceeded 40.0 degreesC. The capacity of the bladder was assessed after 1 h at 43, 44 and 45 degreesC various intervals after heat treatment. In the sham treated control group and in the animals treated at 43 degreesC, no reduction in bladder capacity was observed. The treatment group where the bladder was kept at 44 degreesC for 1 h showed a clear reduction in bladder capacity at days 1 and 3 after hyperthermia. In the 45 degreesC treatment group, four out of seven rats died, this within a few days after treatment. The three surviving rats were tested for bladder capacity and all had a reduced capacity at days 3 and 7 post-treatment. Four weeks after 44 degreesC hyperthermia, all rats had recovered. After hyperthermia, depending on the heat-dose, an increase in blood urea nitrogen ( BUN) was observed. After treatment at 42, 43 and 44 degreesC peak values were observed after similar to1 day (16 or 24 h) followed by recovery; after 42 degreesC BUN levels were almost back to normal after 1 week; after 43 degreesC the level was still twice as high as control levels; and after 44 degreesC recovery of BUN levels to normal seemed slow, 1 week after treatment it was still five times as high as control. From these results, it is concluded that temperatures in the bladder below 44 degreesC are well tolerated. After 1 h at 44 degreesC, a transient decrease in bladder capacity was observed, as well as a high level of azotemia. After 1 h at 45degreesC, a high mortality rate was observed. These observations agree with early clinical observations and may be used as guidelines for further clinical wor
Targeting dna double strand break repair with hyperthermia and dna-pkcs inhibition to enhance the effect of radiation treatment
Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation. The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found. In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome
Endocrine intervention during irradiation does not prevent damage to the thyroid gland
Radiation to the head-neck region may damage the thyroid gland, leading to hypothyroidism or thyroid carcinoma. Outcomes of radiation protection by lowering plasma thyroid-stimulating hormone (TSH) have thus far been ambiguous. Our aim was to evaluate the radioprotective effect of inhibiting the thyroid gland's activity during x-radiation. For this purpose, of 80 5-week old Wistar rats, 64 received cervical irradiation with 15 Gy (single dose). During irradiation, endocrine intervention was done, using thyroxine (T(4)), T(4) plus iodine, or iodine alone compared to placebo. During the endocrine interventions and follow-up, TSH and T(4) concentrations were measured periodically. Histologic examination of thyroid, pituitary gland, or the hypothalamus and any suspect lymph nodes, lungs, and liver was performed after 6 and 54 weeks. It was found that during the endocrine intervention, plasma levels of TSH were lower in rats given T(4) and higher in rats given iodine. After 6 and 54 weeks, no significant reduction in hypothyroidism or thyroid carcinoma was found between the different groups of rats given any endocrine intervention or no intervention. In conclusion, the administration of T(4), iodine or the combination during x-irradiation does not protect against radiation-induced thyroid damag
BrdUrd-induced radiosensitization of two human tumour cell lines at iso-levels of incorporation
Bromodeoxyuridine (BrdUrd)-induced radiosensitization of two different tumour cell lines was compared at equal levels of thymidine replacement. Human lung carcinoma cells (SW-1573) and human colorectal carcinoma cells (RKO) were grown for 48 h in the presence of respectively 1 microM BrdUrd and 4 microM of BrdUrd in order to obtain equal levels of BrdUrd into the DNA. In SW cells the level of thymidine replacement by BrdUrd was 6.7+/-0.5% and in RKO cells this was 7.1+/-0.8. Cell survival after irradiation with single doses up to 8 Gy, was determined with clonogenic assay. The magnitude of BrdUrd-induced radiosensitization was determined by analyzing radiation-dose survival curves with the linear-quadratic formula [S(D)/S(0)=exp-(alphaD+betaD2)]. In the SW cells BrdUrd radiosensitization led to a significant increase of the linear parameter, alpha, determining the initial slope of the survival curves, by a factor of about 2. In the RKO cells BrdUrd increased the value of alpha by a factor 1.4. This suggests that repair of potentially lethal damage (PLD) is inhibited. In both cell lines the quadratic term, beta, strongly influencing the high dose region of the survival curves, was not altered by sensitization by BrdUrd. The increase of alpha is of interest for clinical applications as BrdUrd sensitizes tumour cells after low doses of radiatio
- …
