28,912 research outputs found

    Light Quark Mass Reweighting

    Full text link
    We present a systematic study of the effectiveness of light quark mass reweighting. This method allows a single lattice QCD ensemble, generated with a specific value of the dynamical light quark mass, to be used to determine results for other, nearby light dynamical quark masses. We study two gauge field ensembles generated with 2+1 flavors of dynamical domain wall fermions with light quark masses m_l=0.02 (m_\pi=620 MeV) and m_l=0.01 (m_\pi=420 MeV). We reweight each ensemble to determine results which could be computed directly from the other and check the consistency of the reweighted results with the direct results. The large difference between the 0.02 and 0.01 light quark masses suggests that this is an aggressive application of reweighting as can be seen from fluctuations in the magnitude of the reweighting factor by four orders of magnitude. Never-the-less, a comparison of the reweighed topological charge, average plaquette, residual mass, pion mass, pion decay constant, and scalar correlator between these two ensembles shows agreement well described by the statistical errors. The issues of the effective number of configurations and finite sample size bias are discussed. An examination of the topological charge distribution implies that it is more favorable to reweight from heavier mass to lighter quark mass.Comment: 24 pages and 10 figure

    Uniqueness of nontrivially complete monotonicity for a class of functions involving polygamma functions

    Full text link
    For m,n∈Nm,n\in\mathbb{N}, let fm,n(x)=[ψ(m)(x)]2+ψ(n)(x)f_{m,n}(x)=\bigr[\psi^{(m)}(x)\bigl]^2+\psi^{(n)}(x) on (0,∞)(0,\infty). In the present paper, we prove using two methods that, among all fm,n(x)f_{m,n}(x) for m,n∈Nm,n\in\mathbb{N}, only f1,2(x)f_{1,2}(x) is nontrivially completely monotonic on (0,∞)(0,\infty). Accurately, the functions f1,2(x)f_{1,2}(x) and fm,2n−1(x)f_{m,2n-1}(x) are completely monotonic on (0,∞)(0,\infty), but the functions fm,2n(x)f_{m,2n}(x) for (m,n)≠(1,1)(m,n)\ne(1,1) are not monotonic and does not keep the same sign on (0,∞)(0,\infty).Comment: 9 page

    An external potential dynamic study on the formation of interface in polydisperse polymer blends

    Full text link
    The formation of interface from an initial sharp interface in polydisperse A/B blends is studied using the external potential dynamic method. The present model is a nonlocal coupling model as we take into account the correlation between segments in a single chain. The correlation is approximately expressed by Debye function and the diffusion dynamics are based on the Rouse chain model. The chain length distribution is described by the continuous Schulz distribution. Our numerical calculation indicates that the broadening of interface with respect to time obeys a power law at early times, and the power law indexes are the same for both monodisperse and polydisperse blend. The power law index is larger than that in the local coupling model. However there is not a unified scaling form of the broadening of the interface width if only the interfacial width at equilibrium is taken into account as the characteristic length of the system, because the correlation makes an extra characteristic length in the system, and the polydispersity is related to this length.Comment: 15 pages, 5 figure

    Experimental demonstration of phase-remapping attack in a practical quantum key distribution system

    Full text link
    Unconditional security proofs of various quantum key distribution (QKD) protocols are built on idealized assumptions. One key assumption is: the sender (Alice) can prepare the required quantum states without errors. However, such an assumption may be violated in a practical QKD system. In this paper, we experimentally demonstrate a technically feasible "intercept-and-resend" attack that exploits such a security loophole in a commercial "plug & play" QKD system. The resulting quantum bit error rate is 19.7%, which is below the proven secure bound of 20.0% for the BB84 protocol. The attack we utilize is the phase-remapping attack (C.-H. F. Fung, et al., Phys. Rev. A, 75, 32314, 2007) proposed by our group.Comment: 16 pages, 6 figure

    Epitaxial graphene on SiC(0001): More than just honeycombs

    Full text link
    The potential of graphene to impact the development of the next generation of electronics has renewed interest in its growth and structure. The graphitization of hexagonal SiC surfaces provides a viable alternative for the synthesis of graphene, with wafer-size epitaxial graphene on SiC(0001) now possible. Despite this recent progress, the exact nature of the graphene-SiC interface and whether the graphene even has a semiconducting gap remain controversial. Using scanning tunneling microscopy with functionalized tips and density functional theory calculations, here we show that the interface is a warped carbon sheet consisting of three-fold hexagon-pentagon-heptagon complexes periodically inserted into the honeycomb lattice. These defects relieve the strain between the graphene layer and the SiC substrate, while still retaining the three-fold coordination for each carbon atom. Moreover, these defects break the six-fold symmetry of the honeycomb, thereby naturally inducing a gap: the calculated band structure of the interface is semiconducting and there are two localized states near K below the Fermi level, explaining the photoemission and carbon core-level data. Nonlinear dispersion and a 33 meV gap are found at the Dirac point for the next layer of graphene, providing insights into the debate over the origin of the gap in epitaxial graphene on SiC(0001). These results indicate that the interface of the epitaxial graphene on SiC(0001) is more than a dead buffer layer, but actively impacts the physical and electronic properties of the subsequent graphene layers

    Local Dielectric Measurements of BaTiO3-CoFe2O4 Nano-composites Through Microwave Microscopy

    Full text link
    We report on linear and non-linear dielectric property measurements of BaTiO3 - CoFe2O4 (BTO-CFO) ferroelectro-magnetic nano-composites and pure BaTiO3 and CoFe2O4 samples with Scanning Near Field Microwave Microscopy. The permittivity scanning image with spatial resolution on the micro-meter scale shows that the nano-composites have very uniform quality with an effective dielectric constant \epsilon_r = 140 +/- 6.4 at 3.8 GHz and room temperature. The temperature dependence of dielectric permittivity shows that the Curie temperature of pure BTO was shifted by the clamping effect of the MgO substrate, whereas the Curie temperature shift of the BTO ferroelectric phase in BTO-CFO composites is less pronounced, and if it exists at all, would be mainly caused by the CFO. Non-linear dielectric measurements of BTO-CFO show good ferroelectric properties from BTO.Comment: 6 pages, 6 figures, to be published in the Journal of Materials Researc

    Topological aspect of graphene physics

    Full text link
    Topological aspects of graphene are reviewed focusing on the massless Dirac fermions with/without magnetic field. Doubled Dirac cones of graphene are topologically protected by the chiral symmetry. The quantum Hall effect of the graphene is described by the Berry connection of a manybody state by the filled Landau levels which naturally possesses non-Abelian gauge structures. A generic principle of the topologically non trivial states as the bulk-edge correspondence is applied for graphene with/without magnetic field and explain some of the characteristic boundary phenomena of graphene.Comment: 12 pages, 8 figures. Proceedings for HMF-1
    • …
    corecore