29,450 research outputs found
Adaptive medium access control for VoIP services in IEEE 802.11 WLANs
Abstract- Voice over Internet Protocol (VoIP) is an important service with strict Quality-of-Service (QoS) requirements in Wireless Local Area Networks (WLANs). The popular Distributed Coordination Function (DCF) of IEEE 802.11 Medium Access Control (MAC) protocol adopts a Binary Exponential Back-off (BEB) procedure to reduce the packet collision probability in WLANs. In DCF, the size of contention window is doubled upon a collision regardless of the network loads. This paper presents an adaptive MAC scheme to improve the QoS of VoIP in WLANs. This scheme applies a threshold of the collision rate to switch between two different functions for increasing the size of contention window based on the status of network loads. The performance of this scheme is investigated and compared to the original DCF using the network simulator NS-2. The performance results reveal that the adaptive scheme is able to achieve the higher throughput and medium utilization as well as lower access delay and packet loss probability than the original DCF
Constraining the Circumbinary Envelope of Z CMa via imaging polarimetry
Z CMa is a complex binary system, composed of a Herbig Be and an FU Ori star.
The Herbig star is surrounded by a dust cocoon of variable geometry, and the
whole system is surrounded by an infalling envelope. Previous
spectropolarimetric observations have reported a preferred orientation of the
polarization angle, perpendicular to the direction of a large, parsec-sized jet
associated with the Herbig star. The variability in the amount of polarized
light has been associated to changes in the geometry of the dust cocoon that
surrounds the Herbig star. We aim to constrain the properties of Z CMa by means
of imaging polarimetry at optical wavelengths. Using ExPo, a dual-beam imaging
polarimeter which operates at optical wavelengths, we have obtained imaging
(linear) polarimetric data of Z CMa. Our observations were secured during the
return to quiescence after the 2008 outburst. We detect three polarized
features over Z CMa. Two of these features are related to the two jets reported
in this system: the large jet associated to the Herbig star, and the micro-jet
associated to the FU Ori star. Our results suggest that the micro-jet extends
to a distance ten times larger than reported in previous studies. The third
feature suggests the presence of a hole in the dust cocoon that surrounds the
Herbig star of this system. According to our simulations, this hole can produce
a pencil beam of light that we see scattered off the low-density envelope
surrounding the system.Comment: Accepted for publication in A\&
Laboratory mid-IR spectra of equilibrated and igneous meteorites. Searching for observables of planetesimal debris
Meteorites contain minerals from Solar System asteroids with different
properties (like size, presence of water, core formation). We provide new
mid-IR transmission spectra of powdered meteorites to obtain templates of how
mid-IR spectra of asteroidal debris would look like. This is essential for
interpreting mid-IR spectra of past and future space observatories, like the
James Webb Space Telescope. We show that the transmission spectra of wet and
dry chondrites, carbonaceous and ordinary chondrites and achondrite and
chondrite meteorites are distinctly different in a way one can distinguish in
astronomical mid-IR spectra. The two observables that spectroscopically
separate the different meteorites groups (and thus the different types of
parent bodies) are the pyroxene-olivine feature strength ratio and the peak
shift of the olivine spectral features due to an increase in the iron
concentration of the olivine
Laboratory-based grain-shape models for simulating dust infrared spectra
Analysis of thermal dust emission spectra for dust mineralogy and physical
grain properties depends on laboratory-measured or calculated comparison
spectra. Often, the agreement between these two kinds of spectra is not
satisfactory because of the strong influence of the grain morphology on the
spectra. We investigate the ability of the statistical light-scattering model
with a distribution of form factors (DFF model) to reproduce experimentally
measured infrared extinction spectra for particles that are small compared to
the wavelength. We take advantage of new experimental spectra measured for free
particles dispersed in air with accompanying information on the grain
morphology. For the calculations, we used DFFs that were derived for aggregates
of spherical grains, as well as for compact grain shapes corresponding to
Gaussian random spheres. Irregular particle shapes require a DFF similar to
that of a Gaussian random sphere with sigma=0.3, whereas roundish grain shapes
are best fitted with that of a fractal aggregate of a fractal dimension
2.4-1.8. In addition we used a fitting algorithm to obtain the best-fit DFFs
for the various laboratory samples. In this way we can independently derive
information on the shape of the grains from their infrared spectra. For
anisotropic materials, different DFFs are needed for the different
crystallographic axes. This is due to a theoretical problem, which is inherent
to all models that are simply averaging the contributions of the
crystallographic directions.Comment: 8 pages, 8 figures, accepted by Astronomy and Astrophysic
Dust-grain processing in circumbinary discs around evolved binaries. The RV Tauri spectral twins RU Cen and AC Her
Context: We study the structure and evolution of circumstellar discs around
evolved binaries and their impact on the evolution of the central system. Aims:
To study in detail the binary nature of RUCen and ACHer, as well as the
structure and mineralogy of the circumstellar environment. Methods: We combine
multi-wavelength observations with a 2D radiative transfer study. Our radial
velocity program studies the central stars, while our Spitzer spectra and
broad-band SEDs are used to constrain mineralogy, grain sizes and physical
structure of the circumstellar environment. Results: We determine the orbital
elements of RUCen showing that the orbit is highly eccentric with a rather long
period of 1500 days. The infrared spectra of both objects are very similar and
the spectral dust features are dominated by Mg-rich crystalline silicates. The
small peak-to-continuum ratios are interpreted as being due to large grains.
Our model contains two components with a cold midplain dominated by large
grains, and the near- and mid-IR which is dominated by the emission of smaller
silicates. The infrared excess is well modelled assuming a hydrostatic passive
irradiated disc. The profile-fitting of the dust resonances shows that the
grains must be very irregular. Conclusions: These two prototypical RVTauri
pulsators with circumstellar dust are binaries where the dust is trapped in a
stable disc. The mineralogy and grain sizes show that the dust is highly
processed, both in crystallinity and grain size. The cool crystals show that
either radial mixing is very efficient and/or that the thermal history at grain
formation has been very different from that in outflows. The physical processes
governing the structure of these discs are similar to those observed in
protoplanetary discs around young stellar objects.Comment: 11 pages, 12 figures, accepted for publication by A&
Direct and Indirect Detection of Neutralino Dark Matter and Collider Signatures in an Model with Two Intermediate Scales
We investigate the detectability of neutralino Dark Matter via direct and
indirect searches as well as collider signatures of an model with two
intermediate scales. We compare the direct Dark Matter detection cross section
and the muon flux due to neutralino annihilation in the Sun that we obtain in
this model with mSUGRA predictions and with the sensitivity of current and
future experiments. In both cases, we find that the detectability improves as
the model deviates more from mSUGRA. In order to study collider signatures, we
choose two benchmark points that represent the main phenomenological features
of the model: a lower value of and reduced third generation sfermion
masses due to extra Yukawa coupling contributions in the Renormalization Group
Equations, and increased first and second generation slepton masses due to new
gaugino loop contributions. We show that measurements at the LHC can
distinguish this model from mSUGRA in both cases, by counting events containing
leptonically decaying bosons, heavy neutral Higgs bosons, or like--sign
lepton pairs.Comment: 21 pages, 16 figure
The color dependent morphology of the post-AGB star HD161796
Context. Many protoplanetary nebulae show strong asymmetries in their
surrounding shell, pointing to asymmetries during the mass loss phase.
Questions concerning the origin and the onset of deviations from spherical
symmetry are important for our understanding of the evolution of these objects.
Here we focus on the circumstellar shell of the post-AGB star HD 161796. Aims.
We aim at detecting signatures of an aspherical outflow, as well as to derive
the properties of it. Methods. We use the imaging polarimeter ExPo (the extreme
polarimeter), a visitor instrument at the William Herschel Telescope, to
accurately image the dust shell surrounding HD 161796 in various wavelength
filters. Imaging polarimetry allows us to separate the faint, polarized, light
from circumstellar material from the bright, unpolarized, light from the
central star. Results. The shell around HD 161796 is highly aspherical. A clear
signature of an equatorial density enhancement can be seen. This structure is
optically thick at short wavelengths and changes its appearance to optically
thin at longer wavelengths. In the classification of the two different
appearances of planetary nebulae from HST images it changes from being
classified as DUPLEX at short wavelengths to SOLE at longer wavelengths. This
strengthens the interpretation that these two appearances are manifestations of
the same physical structure. Furthermore, we find that the central star is
hotter than often assumed and the relatively high observed reddening is due to
circumstellar rather than interstellar extinction.Comment: Accepted for publication in A&
The Gluon Spin in the Chiral Bag Model
We study the gluon polarization contribution at the quark model
renormalization scale to the proton spin, , in the chiral bag model. It
is evaluated by taking the expectation value of the forward matrix element of a
local gluon operator in the axial gauge . It is shown that the confining
boundary condition for the color electric field plays an important role. When a
solution satisfying the boundary condition for the color electric field, which
is not the conventionally used but which we favor, is used, the has a
positive value for {\it all} bag radii and its magnitude is comparable to the
quark spin polarization. This results in a significant reduction in the
relative fraction of the proton spin carried by the quark spin, which is
consistent with the small flavor singlet axial current measured in the EMC
experiments.Comment: Corrections to figure
- …