24,585 research outputs found

    Experimental study on Gaussian-modulated coherent states quantum key distribution over standard telecom fiber

    Full text link
    In this paper, we present a fully fiber-based one-way Quantum Key Distribution (QKD) system implementing the Gaussian-Modulated Coherent States (GMCS) protocol. The system employs a double Mach-Zehnder Interferometer (MZI) configuration in which the weak quantum signal and the strong Local Oscillator (LO) go through the same fiber between Alice and Bob, and are separated into two paths inside Bob's terminal. To suppress the LO leakage into the signal path, which is an important contribution to the excess noise, we implemented a novel scheme combining polarization and frequency multiplexing, achieving an extinction ratio of 70dB. To further minimize the system excess noise due to phase drift of the double MZI, we propose that, instead of employing phase feedback control, one simply let Alice remap her data by performing a rotation operation. We further present noise analysis both theoretically and experimentally. Our calculation shows that the combined polarization and frequency multiplexing scheme can achieve better stability in practice than the time-multiplexing scheme, because it allows one to use matched fiber lengths for the signal and the LO paths on both sides of the double MZI, greatly reducing the phase instability caused by unmatched fiber lengths. Our experimental noise analysis quantifies the three main contributions to the excess noise, which will be instructive to future studies of the GMCS QKD systems. Finally, we demonstrate, under the "realistic model" in which Eve cannot control the system within Bob's terminal, a secure key rate of 0.3bit/pulse over a 5km fiber link. This key rate is about two orders of magnitude higher than that of a practical BB84 QKD system.Comment: 21 pages, 9 figure

    Glassy Dynamics in a Frustrated Spin System: Role of Defects

    Full text link
    In an effort to understand the glass transition, the kinetics of a spin model with frustration but no quenched randomness has been analyzed. The phenomenology of the spin model is remarkably similiar to that of structural glasses. Analysis of the model suggests that defects play a major role in dictating the dynamics as the glass transition is approached.Comment: 9 pages, 5 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    Long range scattering effects on spin Hall current in pp-type bulk semiconductors

    Full text link
    Employing a nonequilibrium Green's function approach, we examine the effects of long-range hole-impurity scattering on spin-Hall current in pp-type bulk semiconductors within the framework of the self-consistent Born approximation. We find that, contrary to the null effect of short-range scattering on spin-Hall current, long-range collisions do produce a nonvanishing contribution to the spin-Hall current, which is independent of impurity density in the diffusive regime and relates only to hole states near the Fermi surface. The sign of this contribution is opposite to that of the previously predicted disorder-independent spin-Hall current, leading to a sign change of the total spin-Hall current as hole density varies. Furthermore, we also make clear that the disorder-independent spin-Hall effect is a result of an interband polarization directly induced by the dc electric field with contributions from all hole states in the Fermi sea.Comment: 9 pages, 1 figur

    New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models

    Full text link
    Extensions of the Standard Model often predict new chiral interactions for top quark, which will contribute to top quark spin correlation and polarization in ttˉt\bar{t} production at the LHC. In this work, under the constraints from the current Tevatron measurements, a comparative study of the spin correlation and polarization is performed in three new physics models: the minimal supersymmetric model without R-parity (RPV-MSSM), the third-generation enhanced left-right model and the axigluon model. We find that the polarization asymmetry may be enhanced to the accessible level in all these models while the correction to the spin correlation may be detectable in the axigluon model and the RPV-MSSM with λ"\lambda" couplings.Comment: Version in PRD (figs updated and discussions added

    Phonon-drag effects on thermoelectric power

    Full text link
    We carry out a calculation of the phonon-drag contribution SgS_g to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at high temperatures. In the linear transport limit, SgS_g is equivalent to the result obtained from the Boltzmann equation with a relaxation time approximation. The theory is applied to experiments and agreement is found between the theoretical predictions and experimental results. The role of hot-electron effects in SgS_g is discussed. The importance of the contribution of SgS_g to thermoelectric power in the hot-electron transport condition is emphasized.Comment: 8 pages, REVTEX 3.0, 7 figures avilable upon reques

    Shot noise of inelastic tunneling through quantum dot systems

    Full text link
    We present a theoretical analysis of the effect of inelastic electron scattering on current and its fluctuations in a mesoscopic quantum dot (QD) connected to two leads, based on a recently developed nonperturbative technique involving the approximate mapping of the many-body electron-phonon coupling problem onto a multichannel single-electron scattering problem. In this, we apply the B\"uttiker scattering theory of shot noise for a two-terminal mesoscopic device to the multichannel case with differing weight factors and examine zero-frequency shot noise for two special cases: (i) a single-molecule QD and (ii) coupled semiconductor QDs. The nonequilibrium Green's function method facilitates calculation of single-electron transmission and reflection amplitudes for inelastic processes under nonequilibrium conditions in the mapping model. For the single-molecule QD we find that, in the presence of the electron-phonon interaction, both differential conductance and differential shot noise display additional peaks as bias-voltage increases due to phonon-assisted processes. In the case of coupled QDs, our nonperturbative calculations account for the electron-phonon interaction on an equal footing with couplings to the leads, as well as the coupling between the two dots. Our results exhibit oscillations in both the current and shot noise as functions of the energy difference between the two QDs, resulting from the spontaneous emission of phonons in the nonlinear transport process. In the "zero-phonon" resonant tunneling regime, the shot noise exhibits a double peak, while in the "one-phonon" region, only a single peak appears.Comment: 10 pages, 6 figures, some minor changes, accepted by Phys. Rev.

    Search for IR Emission from Intracluster Dust in A2029

    Full text link
    We have searched for IR emission from the intracluster dust (ICD) in the galaxy cluster A2029. Weak signals of enhanced extended emission in the cluster are detected at both 24 and 70 micron. However, the signals are indistinguishable from the foreground fluctuations. The 24 versus 70 micron color map does not discriminate the dust emission in the cluster from the cirrus emission. After excluding the contamination from the point sources, we obtain upper limits for the extended ICD emission in A2029, 5 x 10^3 Jy/sr at 24 micron and 5 x 10^4 Jy/sr at 70 micron. The upper limits are generally consistent with the expectation from theoretical calculations and support a dust deficiency in the cluster compared to the ISM in our galaxy. Our results suggest that even with the much improved sensitivity of current IR telescopes, a clear detection of the IR emission from ICD may be difficult due to cirrus noise.Comment: 5 pages, 4 figures, accepted by ApJ
    • …
    corecore