535 research outputs found

    GABAA receptor diversity and pharmacology

    Get PDF
    Because of its control of spike-timing and oscillatory network activity, γ-aminobutyric acid (GABA)-ergic inhibition is a key element in the central regulation of somatic and mental functions. The recognition of GABAA receptor diversity has provided molecular tags for the analysis of distinct neuronal networks in the control of specific pharmacological and physiological brain functions. Neurons expressing α1GABAA receptors have been found to mediate sedation, whereas those expressing α2GABAA receptors mediate anxiolysis. Furthermore, associative temporal and spatial memory can be regulated by modulating the activity of hippocampal pyramidal cells via extrasynaptic α5GABAA receptors. In addition, neurons expressing α3GABAA receptors are instrumental in the processing of sensory motor information related to a schizophrenia endophenotype. Finally, during the postnatal development of the brain, the maturation of GABAergic interneurons seems to provide the trigger for the experience-dependent plasticity of neurons in the visual cortex, with α1GABAA receptors setting the time of onset of a critical period of plasticity. Thus, particular neuronal networks defined by respective GABAA receptor subtypes can now be linked to the regulation of various clearly defined behavioural patterns. These achievements are of obvious relevance for the pharmacotherapy of certain brain disorders, in particular sleep dysfunctions, anxiety disorders, schizophrenia and diseases associated with memory deficit

    Homogeneous nucleation rates of nitric acid dihydrate (NAD) at simulated stratospheric conditions ? Part II: Modelling

    No full text
    International audienceActivation energies ?Gact for the nucleation of nitric acid dihydrate (NAD) in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 K and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation ?Gact=A×(T lnSNAD)-2+B is fitted to our experimetnal data with A=2.5×106 kcal K2 mol-1 and B=11.2?0.1(T?192) kcal mol-1. A and B were chosen to also achieve good agreement with literature data of ?Gact. The parameter A implies a constant interfacial tension ?sl=51 cal mol-1 cm-2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001) and surface-based (Tabazadeh et al., 2002) nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments

    Homogeneous nucleation rates of nitric acid dihydrate (NAD) at simulated stratospheric conditions – Part II: Modelling

    Get PDF
    Activation energies &Delta;<i>G</i><sub>act</sub> for the nucleation of nitric acid dihydrate (NAD) in supercooled binary HNO<sub>3</sub>/H<sub>2</sub>O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere) aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios <i>S</i><sub>NAD</sub> between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for &Delta;<i>G</i><sub>act</sub>=<i>A</i>&times;(<i>T</i> ln <i>S</i><sub>NAD</sub>)<sup>&minus;2</sup>+<i>B</i> is fitted to the experimental data with <i>A</i>=2.5&times;10<sup>6</sup> kcal K<sup>2</sup> mol<sup>&minus;1</sup> and <i>B</i>=11.2&minus;0.1(T&minus;192) kcal mol<sup>&minus;1</sup>. <i>A</i> and <i>B</i> were chosen to also achieve good agreement with literature data of &Delta;<i>G</i><sub>act</sub>. The parameter <i>A</i> implies, for the temperature and composition range of our analysis, a mean interface tension &sigma;<sub><i>sl</i></sub>=51 cal mol<sup>&minus;1</sup> cm<sup>&minus;2</sup> between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter <i>B</i>. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001) and surface-based (Tabazadeh et al., 2002) nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments

    New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the immersion mode

    Get PDF
    The heterogeneous ice nucleation ability of oxalic acid in the immersion mode has been investigated by controlled expansion cooling runs with airborne, ternary solution droplets composed of, (i), sodium chloride, oxalic acid, and water (NaCl/OA/H<sub>2</sub>O) and, (ii), sulphuric acid, oxalic acid, and water (H<sub>2</sub>SO<sub>4</sub>/OA/H<sub>2</sub>O). Polydisperse aerosol populations with median diameters ranging from 0.5–0.7 μm and varying solute concentrations were prepared. The expansion experiments were conducted in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at initial temperatures of 244 and 235 K. In the ternary NaCl/OA/H<sub>2</sub>O system, solid inclusions of oxalic acid, presumably nucleated as oxalic acid dihydrate, were formed by temporarily exposing the ternary solution droplets to a relative humidity below the efflorescence point of NaCl. The matrix of the crystallised NaCl particulates triggered the precipitation of the organic crystals which later remained as solid inclusions in the solution droplets when the relative humidity was subsequently raised above the deliquescence point of NaCl. The embedded oxalic acid crystals reduced the critical ice saturation ratio required for the homogeneous freezing of pure NaCl/H<sub>2</sub>O solution droplets at a temperature of around 231 K from 1.38 to about 1.32. Aqueous solution droplets with OA inclusions larger than about 0.27 μm in diameter efficiently nucleated ice by condensation freezing when they were activated to micron-sized cloud droplets at 241 K, i.e., they froze well above the homogeneous freezing temperature of pure water droplets of about 237 K. Our results on the immersion freezing potential of oxalic acid corroborate the findings from a recent study with emulsified aqueous solutions containing crystalline oxalic acid. In those experiments, the crystallisation of oxalic acid diyhdrate was triggered by a preceding homogeneous freezing cycle with the emulsion samples. The expansion cooling cycles with ternary H<sub>2</sub>SO<sub>4</sub>/OA/H<sub>2</sub>O solution droplets were aimed to analyse whether those findings can be transferred to ice nucleation experiments with airborne oxalic acid containing aerosol particles. Under our experimental conditions, the efficiency by which the surface of homogeneously nucleated ice crystals triggered the precipitation of oxalic acid dihydrate was very low, i.e., less than one out of a hundred ice crystals that were formed by homogeneous freezing in a first expansion cooling cycle left behind an ice-active organic crystal that acted as immersion freezing nucleus in a second expansion cooling cycle

    Probing ice clouds by broadband mid-infrared extinction spectroscopy: case studies from ice nucleation experiments in the AIDA aerosol and cloud chamber

    No full text
    International audienceSeries of infrared extinction spectra of ice crystals were recorded in the 6000?800 cm-1 wavenumber regime during expansion cooling experiments in the large aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe. Either supercooled sulphuric acid solution droplets or dry mineral dust particles were added as seed aerosols to initiate ice formation after having established ice supersaturated conditions inside the chamber. The various ice nucleation runs were conducted at temperatures between 237 and 195 K, leading to median sizes of the nucleated ice particles of 1?15 µm. The measured infrared spectra were fitted with reference spectra from T-matrix calculations to retrieve the number concentration as well as the number size distribution of the generated ice clouds. The ice particles were modelled as finite circular cylinders with aspect ratios ranging from 0.5 to 3.0. Benefiting from the comprehensive diagnostic tools for the characterisation of ice clouds which are available at the AIDA facility, the infrared retrieval results with regard to the ice particle number concentration could be compared to independent measurements with various optical particle counters. This provided a unique chance to quantitatively assess potential errors or solution ambiguities in the retrieval procedure which mainly originate from the difficulty to find an appropriate shape representation for the aspherical particle habits of the ice crystals. Based on these inter-comparisons, we demonstrate that there is no standard retrieval approach which can be routinely applied to all different experimental scenarios. In particular, the concept to account for the asphericity of the ice crystals, the a priori constraints which might be imposed on the unknown number size distribution of the ice crystals (like employing an analytical distribution function), and the wavenumber range which is included in the fitting algorithm should be carefully adjusted to each single retrieval problem

    Neural elements in the pineal complex of the frog, Rana esculenta, II: GABA-immunoreactive neurons and FMRFamide-immunoreactive efferent axons

    Get PDF
    The photosensory pineal complex of anurans comprises an extracranial part, the frontal organ, and an intracranial part, the pineal organ proper. Although the pineal organ functions mainly as a luminosity detector, the frontal organ monitor the relative proportions of short and intermediate/long wavelengths in the ambient illumination. The major pathway of information processing in the pineal and frontal organs is the photoreceptor to ganglion cell synapse. It is not known whether interneurons form part of the neural circuitry. In the present study, we demonstrate GABA-immunoreactive (GABA-IR) neurons in the pineal and frontal organs of the frog, Rana esculenta. No GABA-IR axons were observed in the pineal nerve between the frontal and pineal organs, or in the pineal tract that connects the pineal complex with the brain. The GABA-IR neurons differed in morphology from centrally projecting neurons visualized by retrograde labeling with horseradish peroxidase. Thus, we suggest that the GABA-IR neurons in the pineal and frontal organs represent local interneurons. Axons of central origin, immunoreactive with a sensitive antiserum against the tetrapeptide Phe-Met-Phe-Arg-NH2 (FMRFamide), were observed in the intracranial portion of the photosensory pineal organ. The immunoreactive axons enter the caudal pole of the pineal organ via the posterior commissure. The largest density of axons was observed in the caudal part, while fewer axons were detected in the rostral portion. The uneven distribution of the FMRFamide-immunoreactive axons may be related to the distribution of different types of intrapineal neurons. FMRFamide-immunoreactive varicose axons were observed in the extracranial frontal organ. A central innervation of the pineal organ, previously known exclusively from amniotes, is probably not per se linked with the evolutionary transition of the pineal organ from a directly photosensory organ to a neuroendocrine organ. It could rather represent a centrifugal input to a sensory system which has been retained when the directly sensory functions have changed, during phylogency, to neuroendocrine function

    A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models

    Get PDF
    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T lower than -60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than -50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have a stronger influence on cloud properties, such as cloud longevity and initiation, compared to previous parameterizations
    corecore