12 research outputs found

    Application of blocking diagnosis methods to General Circulation Models. Part II: model simulations

    No full text
    A previously defined automatic method is applied to reanalysis and present-day (1950-1989) forced simulations of the ECHO-G model in order to assess its performance in reproducing atmospheric blocking in the Northern Hemisphere. Unlike previous methodologies, critical parameters and thresholds to estimate blocking occurrence in the model are not calibrated with an observed reference, but objectively derived from the simulated climatology. The choice of model dependent parameters allows for an objective definition of blocking and corrects for some intrinsic model bias, the difference between model and observed thresholds providing a measure of systematic errors in the model. The model captures reasonably the main blocking features (location, amplitude, annual cycle and persistence) found in observations, but reveals a relative southward shift of Eurasian blocks and an overall underestimation of blocking activity, especially over the Euro-Atlantic sector. Blocking underestimation mostly arises from the model inability to generate long persistent blocks with the observed frequency. This error is mainly attributed to a bias in the basic state. The bias pattern consists of excessive zonal winds over the Euro-Atlantic sector and a southward shift at the exit zone of the jet stream extending into in the Eurasian continent, that are more prominent in cold and warm seasons and account for much of Euro-Atlantic and Eurasian blocking errors, respectively. It is shown that other widely used blocking indices or empirical observational thresholds may not give a proper account of the lack of realism in the model as compared with the proposed method. This suggests that in addition to blocking changes that could be ascribed to natural variability processes or climate change signals in the simulated climate, attention should be paid to significant departures in the diagnosis of phenomena that can also arise from an inappropriate adaptation of detection methods to the climate of the model

    Application of blocking diagnosis methods to General Circulation Models. Part I: a novel detection scheme

    No full text
    This paper aims to provide a new blocking definition with applicability to observations and model simulations. An updated review of previous blocking detection indices is provided and some of their implications and caveats discussed. A novel blocking index is proposed by reconciling two traditional approaches based on anomaly and absolute flows. Blocks are considered from a complementary perspective as a signature in the anomalous height field capable of reversing the meridional jet-based height gradient in the total flow. The method succeeds in identifying 2-D persistent anomalies associated to a weather regime in the total flow with blockage of the westerlies. The new index accounts for the duration, intensity, extension, propagation, and spatial structure of a blocking event. In spite of its increased complexity, the detection efficiency of the method is improved without hampering the computational time. Furthermore, some misleading identification problems and artificial assumptions resulting from previous single blocking indices are avoided with the new approach. The characteristics of blocking for 40 years of reanalysis (1950-1989) over the Northern Hemisphere are described from the perspective of the new definition and compared to those resulting from two standard blocking indices and different critical thresholds. As compared to single approaches, the novel index shows a better agreement with reported proxies of blocking activity, namely climatological regions of simultaneous wave amplification and maximum band-pass filtered height standard deviation. An additional asset of the method is its adaptability to different data sets. As critical thresholds are specific of the data set employed, the method is useful for observations and model simulations of different resolutions, temporal lengths and time variant basic states, optimizing its value as a tool for model validation. Special attention has been paid on the devise of an objective scheme easily applicable to General Circulation Models where observational thresholds may be unsuitable due to the presence of model bias. Part II of this study deals with a specific implementation of this novel method to simulations of the ECHO-G global climate model
    corecore