25 research outputs found

    ミナミ タイヘイヨウ ヒカク チタイ ジョウヤク ケイセイ カテイ ニ オケル オーストタリア ノ カクグンシュク ガイコウ セイサク

    Full text link
    Alternate bilayer structures of N,N'-bis(2,5-di-tert-butylphenyl)-3,4,9,10- perylene dicarboximide (PDI), freebase phthalocyanines (Pc), and double-linked free-base phthalocyanine-fullerene dyad (Pc-C 60) were prepared by the Langmuir-Schäfer method and studied using a range of optical spectroscopy methods including femtosecond pump-probe and up-conversion. An efficient quenching of the PDI fluorescence by Pc and Pc-C 60 dyad was observed in both steady-state and time-resolved fluorescence measurements. The quenching takes place in less than a few picoseconds, and is due to energy transfer from perylene dicarboximide to phthalocyanine chromophore in PDI|Pc and PDI|Pc-C 60 films. In the PDI|Pc-C 60 bilayer structure the energy transfer is followed by a charge separation in the Pc-C 60 layer, yielding a long-lived (a few microseconds) intermolecular charge separated state similar to that reported recently for Pc-C 60 Langmuir-Blodgett films (Lehtivuori, H.; et al. J. Phys. Chem. C 2008, 112, 9896-9902)

    Fluorescence properties of the chromophore-binding domain of bacteriophytochrome from Deinococcus radiodurans

    No full text
    Fluorescent proteins are versatile tools for molecular imaging. In this study, we report a detailed analysis of the absorption and fluorescence properties of the chromophore-binding domain from Deinococcus radiodurans and its D207H mutant. Using single photon counting and transient absorption techniques, the average excited state lifetime of both studied systems was about 370 ps. The D207H mutation slightly changed the excited state decay profile but did not have a considerable effect on the average decay time of the system or the shape of the absorption and emission spectra of the biliverdin chromophore. We confirmed that the fluorescence properties of both samples are very similar in vivo and in vitro. However, we found that the paraformaldehyde fixation of the Escherichia coli cells containing the recombinant phytochrome protein significantly changed the fluorescence properties of the chromophore-binding domain. The biliverdin fluorescence was diminished almost completely, and the fluorescence originated only from the protoporphyrin molecules. Our results emphasize that the effect of protoporphyrin IXa should not be ignored in the fluorescence experiments with phytochrome systems while designing better red fluorescence markers for cellular imaging
    corecore