23 research outputs found

    Gravitational-wave versus binary-pulsar tests of strong-field gravity

    Full text link
    Binary systems comprising at least one neutron star contain strong gravitational field regions and thereby provide a testing ground for strong-field gravity. Two types of data can be used to test the law of gravity in compact binaries: binary pulsar observations, or forthcoming gravitational-wave observations of inspiralling binaries. We compare the probing power of these two types of observations within a generic two-parameter family of tensor-scalar gravitational theories. Our analysis generalizes previous work (by us) on binary-pulsar tests by using a sample of realistic equations of state for nuclear matter (instead of a polytrope), and goes beyond a previous study (by C.M. Will) of gravitational-wave tests by considering more general tensor-scalar theories than the one-parameter Jordan-Fierz-Brans-Dicke one. Finite-size effects in tensor-scalar gravity are also discussed.Comment: 23 pages, REVTeX 3.0, uses epsf.tex to include 5 postscript figures (2 paragraphs and a 5th figure added at the end of section IV + minor changes

    Interferometric Observations of the Hierarchical Triple System Algol

    Full text link
    Algol is a triple stellar system consisting of a close semidetached binary orbited by a third object. Due to the disputed spatial orientation of the close pair, the third body perturbation of this pair is a subject of much research. In this study, we determine the spatial orientation of the close pair orbital plane using the CHARA Array, a six-element optical/IR interferometer located on Mount Wilson, and state-of-the-art e-EVN interferometric techniques. We find that the longitude of the line of nodes for the close pair is \Omega_1=48\degr\pm2\degr and the mutual inclination of the orbital planes of the close and the wide pairs is 95\degr\pm3\degr. This latter value differs by 5\degr from the formerly known 100\degr which would imply a very fast inclination variation of the system, not borne out by the photometric observations. We also investigated the dynamics of the system with numerical integration of the equations of motions using our result as an initial condition. We found large variations in the inclination of the close pair (its amplitude \sim 170\degr) with a period of about 20 millennia. This result is in good agreement with the photometrically observed change of amplitude in Algol's primary minimum.Comment: ApJ, in press. This is the accepted version; will be changed with the final version later (minor language corrections

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199

    The Confrontation between General Relativity and Experiment

    Get PDF
    The status of experimental tests of general relativity and of theoretical frameworks for analysing them are reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the E\"otv\"os experiment, tests of special relativity, and the gravitational redshift experiment. Future tests of EEP and of the inverse square law will search for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected to half a percent using the binary pulsar, and new binary pulsar systems may yield further improvements. When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.Comment: 103 pages, 10 figures, accepted for publication in Living Reviews in Relativit

    Gravitational Lensing in Astronomy

    Get PDF
    Deflection of light by gravity was predicted by General Relativity and observationaly confirmed in 1919. In the following decades various aspects of the gravitational lens effect were explored theoretically, among them the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility to determine Hubble's constant with lensing. Only relatively recently gravitational lensing became an observational science after the discovery of the first doubly imaged quasar in 1979. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered since, e.g. giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, or weak gravitational lensing. By now literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, physics of quasars, dark matter in galaxy halos, or galaxy structure.Comment: Review article for "Living Reviews in Relativity", see http://www.livingreviews.org . 41 pages, latex, 22 figures (partly in GIF format due to size constraints). High quality postscript files can be obtained electronically at http://www.aip.de:8080/~jkw/review_figures.htm

    Classical tests of General Relativity in thick branes

    Get PDF
    Classical tests of General Relativity in braneworld scenarios have been investigated recently with the purpose of posing observational constraints on parameters of some models of infinitely thin brane. Here we consider the motion of test particles in a thick brane scenario that corresponds to a regularized version of the Garriga-Tanaka solution, which describes a black hole solution in RSII model, in the weak field regime. By adapting a mechanism previously formulated in order to describe the confinement of massive tests particles in a domain wall (that simulates classically the trapping of the Dirac field in a domain wall), we study the influence of the brane thickness on the four-dimensional (4D) path of massless particles. Although the geometry is not warped and, therefore, the bound motion in the transverse direction is not decoupled from the movement in the 4D-world, we can find an explicit solution for the light deflection and the time delay, if the motion in the fifth direction is a high frequency oscillation. We verify that, owing to the transverse motion, the light deflection and the time delay depend on the energy of the light rays. This feature may lead to the phenomenon of gravitational rainbow. We also consider the problem from a semi-classical perspective, investigating the effects of the brane thickness on the motion of the zero-mode in the 4D-world

    The Confrontation between General Relativity and Experiment

    Get PDF
    The status of experimental tests of general relativity and of theoretical frameworks for analysing them is reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of special relativity, and the gravitational redshift experiment. Future tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational-wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and other binary pulsar systems have yielded other tests, especially of strong-field effects. When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.Comment: 89 pages, 8 figures; an update of the Living Review article originally published in 2001; final published version incorporating referees' suggestion

    The Confrontation between General Relativity and Experiment

    Full text link

    Foundry Resins

    No full text
    corecore