323 research outputs found
Initial Experience of Dobutamine Stress Echocardiography in Ibn Al-Bitar Hospital for Cardiac Surgery
Background: Dobutamine stress echocardiography (DSE) is a well established non invasive test for the diagnosis and risk stratification of patients with coronary artery disease. Aim of the study was to conduct a pilot study in order to establish the basis for the future routine practice of DSE in our center (Ibn Al- Bitar Hospital for Cardiac Surgery).
Patients and Methods: Fifty consecutive patients who were referred from the outpatient of our center, from August 2007 to July 2008, were included. The age range was 39 – 70 years with an average of 57.18 years. Fifty-eight percent were males. Patients were enrolled in the study in accordance with the American Heart Association/ American College of Cardiology guidelines, including mainly those who are unable to exercise due to an orthopedic problem (26%) or limited functional capacity (30%). Some Patients with resting electrocardiographic changes (20%) and non diagnostic exercise test (14%) were also included as well as five patients (10%) for the assessment of myocardial viability. The baseline echocardiogram was normal in 44 % of cases. Others had resting wall motion abnormalities due to previous myocardial infarction (50%) or left bundle branch block (6%). Dobutamine was given by a syringe or an infusion pump at incremental doses (every three minutes) of 5,10,20,30, and finally 40 μg/kg/min. Atropine was needed at peak test in 36% of cases to increase the proportion of patients who reach the target heart rate.
Results: The test was positive in 5 patients (10%); negative in 34(68%), non diagnostic in 2(4%), aborted due to intolerable symptoms in 3(6%) and stopped due to arrhythmias in 3(6%) patients. Side effects included chest tightness and irritability in 40%, headache in 12%, nausea and vomiting in 10%, and postural hypotension in 4%. Infrequent ventricular/atrial ectopics occurred in 13%, supraventricular tachycardia in one patient, and complex multiple ventricular ectopics in 3 patients; no incidence of sustained ventricular tachycardia or ventricular fibrillation occurred. There was no incidence of myocardial infarction or death.
Conclusions: DSE is a safe and practical test provided it is used according to the recommendedprotocols. A special unit for DSE in our centre is recommended
Monitoring collagen gelling by elastic scattering spectroscopy (ESS)
Collagen is being used extensively in tissue engineering and on a larger scale in the field of cosmetic surgery. It is either used as a gel or plastically compressed sheet. The fundamental science behind collagen gelling has been studied but little is known about the precise timing of gelling and the variables that affect gelling in the first 30 minutes. Critically, before collagen can be engineered as a predictable functional material we must be able to control fibril aggregation and gel formation. Here we report on the use of elastic scattering spectroscopy (ESS) to detect changes in scattering in rat tail and GMP bovine skin collagen during gelling. Effect of cell seeding on gelling is also reported
Protein-Glutamine Gamma-Glutamyltransferase
info:eu-repo/semantics/publishedVersio
X-Ray Structure of the Human Calreticulin Globular Domain Reveals a Peptide-Binding Area and Suggests a Multi-Molecular Mechanism
In the endoplasmic reticulum, calreticulin acts as a chaperone and a
Ca2+-signalling protein. At the cell surface, it mediates
numerous important biological effects. The crystal structure of the human
calreticulin globular domain was solved at 1.55 Å resolution. Interactions
of the flexible N-terminal extension with the edge of the lectin site are
consistently observed, revealing a hitherto unidentified peptide-binding site. A
calreticulin molecular zipper, observed in all crystal lattices, could further
extend this site by creating a binding cavity lined by hydrophobic residues.
These data thus provide a first structural insight into the lectin-independent
binding properties of calreticulin and suggest new working hypotheses, including
that of a multi-molecular mechanism
Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection
<p>Abstract</p> <p>Background</p> <p>Gut homeostasis is central to whole organism health, and its disruption is associated with a broad range of pathologies. Following damage, complex physiological events are required in the gut to maintain proper homeostasis. Previously, we demonstrated that ingestion of a nonlethal pathogen, <it>Erwinia carotovora carotovora 15</it>, induces a massive increase in stem cell proliferation in the gut of <it>Drosophila</it>. However, the precise cellular events that occur following infection have not been quantitatively described, nor do we understand the interaction between multiple pathways that have been implicated in epithelium renewal.</p> <p>Results</p> <p>To understand the process of infection and epithelium renewal in more detail, we performed a quantitative analysis of several cellular and morphological characteristics of the gut. We observed that the gut of adult <it>Drosophila </it>undergoes a dynamic remodeling in response to bacterial infection. This remodeling coordinates the synthesis of new enterocytes, their proper morphogenesis and the elimination of damaged cells through delamination and anoikis. We demonstrate that one signaling pathway, the epidermal growth factor receptor (EGFR) pathway, is key to controlling each of these steps through distinct functions in intestinal stem cells and enterocytes. The EGFR pathway is activated by the EGF ligands, Spitz, Keren and Vein, the latter being induced in the surrounding visceral muscles in part under the control of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Additionally, the EGFR pathway synergizes with the JAK/STAT pathway in stem cells to promote their proliferation. Finally, we show that the EGFR pathway contributes to gut morphogenesis through its activity in enterocytes and is required to properly coordinate the delamination and anoikis of damaged cells. This function of the EGFR pathway in enterocytes is key to maintaining homeostasis, as flies lacking EGFR are highly susceptible to infection.</p> <p>Conclusions</p> <p>This study demonstrates that restoration of normal gut morphology following bacterial infection is a more complex phenomenon than previously described. Maintenance of gut homeostasis requires the coordination of stem cell proliferation and differentiation, with the incorporation and morphogenesis of new cells and the expulsion of damaged enterocytes. We show that one signaling pathway, the EGFR pathway, is central to all these stages, and its activation at multiple steps could synchronize the complex cellular events leading to gut repair and homeostasis.</p
An immunohistochemical study of the antinociceptive effect of calcitonin in ovariectomized rats
<p>Abstract</p> <p>Background</p> <p>Calcitonin is used as a treatment to reduce the blood calcium concentration in hypercalcemia and to improve bone mass in osteoporosis. An analgesic effect of calcitonin has been observed and reported in clinical situations. Ovariectomaized (OVX) rats exhibit the same hormonal changes as observed in humans with osteoporosis and are an animal model of postmenopousal osteoporosis. The aim of this study to investigate antinociceptive effect of calcitonin in OVX rats using the immunohistochemical study.</p> <p>Methods</p> <p>We assessed the antinociceptive effects of calcitonin in an ovariectomized (OVX) rat model, which exhibit osteoporosis and hyperalgesia, using the immunohistochemical method. Fifteen rats were ovariectomized bilaterally, and ten rats were received the same surgery expected for ovariectomy as a sham model. We used five groups: the OVX-CT (n = 5), the sham-CT (n = 5), and the OVX-CT-pcpa (n = 5) groups recieved calcitonin (CT: 4 U/kg/day), while OVX-vehi (n = 5) and the sham-vehi (n = 5) groups received vehicle subcutaneously 5 times a week for 4 weeks. The OVX-CT-pcpa-group was given traperitoneal injection of p-chlorophenylalanine (pcpa; an inhibitor of serotonin biosynthesis) (100 mg/kg/day) in the last 3 days of calcitonon injection. Two hours after 5% formalin (0.05 ml) subcutaneously into the hind paw, the L5 spinal cord were removed and the number of Fos-immunoreactive (ir) neurons were evaluated using the Mann-Whitney-U test.</p> <p>Results</p> <p>The numbers of Fos-ir neurons in the OVX-CT and sham-CT groups were significantly less than in the OVX-vehi and sham-vehi groups, respectively (p = 0.0090, p = 0.0090). The number of Fos-ir neurons in the OVX-CT-pcpa-group was significantly more than that of the OVX-CT-group (p = 0.0283), which means pcpa inhibits calcitonin induced reduction of c-Fos production.</p> <p>Conclusion</p> <p>The results in this study demonstrated that 1) the increase of c-Fos might be related to hyperalgesia in OVX-rats. 2) Calcitonin has an antinociceptive effect in both OVX and sham rats. 3) The central serotonergic system is involved in the antinociceptive properties of calcitonin.</p
Identification of Inhibitors against Mycobacterium tuberculosis Thiamin Phosphate Synthase, an Important Target for the Development of Anti-TB Drugs
Tuberculosis (TB) continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6–9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M.tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M.tuberculosis. In this study, a comparative homology model of M.tuberculosis thiamin phosphate synthase (MtTPS) was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC50 values ranging from 20 – 100 µg/ml and two of these exhibited weak inhibition of M.tuberculosis growth with MIC99 values being 125 µg/ml and 162.5 µg/ml while one compound was identified as a very potent inhibitor of M.tuberculosis growth with an MIC99 value of 6 µg/ml. This study establishes MtTPS as a novel drug target against M.tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis
Pirt, a TRPV1 Modulator, Is Required for Histamine-Dependent and -Independent Itch
Itch, or pruritus, is an important clinical problem whose molecular basis has yet to be understood. Recent work has begun to identify genes that contribute to detecting itch at the molecular level. Here we show that Pirt, known to play a vital part in sensing pain through modulation of the transient receptor potential vanilloid 1 (TRPV1) channel, is also necessary for proper itch sensation. Pirt−/− mice exhibit deficits in cellular and behavioral responses to various itch-inducing compounds, or pruritogens. Pirt contributes to both histaminergic and nonhistaminergic itch and, crucially, is involved in forms of itch that are both TRPV1-dependent and -independent. Our findings demonstrate that the function of Pirt extends beyond nociception via TRPV1 regulation to its role as a critical component in several itch signaling pathways
OsTIR1 and OsAFB2 Downregulation via OsmiR393 Overexpression Leads to More Tillers, Early Flowering and Less Tolerance to Salt and Drought in Rice
The microRNA miR393 has been shown to play a role in plant development and in the stress response by targeting mRNAs that code for the auxin receptors in Arabidopsis. In this study, we verified that two rice auxin receptor gene homologs (OsTIR1 and OsAFB2) could be targeted by OsmiR393 (Os for Oryza sativa). Two new phenotypes (increased tillers and early flowering) and two previously observed phenotypes (reduced tolerance to salt and drought and hyposensitivity to auxin) were observed in the OsmiR393-overexpressing rice plants. The OsmiR393-overexpressing rice demonstrated hyposensitivity to synthetic auxin-analog treatments. These data indicated that the phenotypes of OsmiR393-overexpressing rice may be caused through hyposensitivity to the auxin signal by reduced expression of two auxin receptor genes (OsTIR1 and OsAFB2). The expression of an auxin transporter (OsAUX1) and a tillering inhibitor (OsTB1) were downregulated by overexpression of OsmiR393, which suggested that a gene chain from OsmiR393 to rice tillering may be from OsTIR1 and OsAFB2 to OsAUX1, which affected the transportation of auxin, then to OsTB1, which finally controlled tillering. The positive phenotypes (increased tillers and early flowering) and negative phenotypes (reduced tolerance to salt and hyposensitivity to auxin) of OsmiR393-overexpressing rice present a dilemma for molecular breeding
- …