100 research outputs found
Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L.
This study investigated the interaction of NaCl-salinity and elevated atmospheric CO2 concentration on gas exchange, leaf pigment composition, and leaf ultrastructure of the potential cash crop halophyte Aster tripolium. The plants were irrigated with five different salinity levels (0, 25, 50, 75, 100% seawater salinity) under ambient and elevated (520 ppm) CO2. Under saline conditions (ambient CO2) stomatal and mesophyll resistance increased, leading to a significant decrease in photosynthesis and water use efficiency (WUE) and to an increase in oxidative stress. The latter was indicated by dilations of the thylakoid membranes and an increase in superoxide dismutase (SOD) activity. Oxidative stress could be counteracted by thicker epidermal cell walls of the leaves, a thicker cuticle, a reduced chlorophyll content, an increase in the chlorophyll a/b ratio and a transient decline of the photosynthetic efficiency. Elevated CO2 led to a significant increase in photosynthesis and WUE. The improved water and energy supply was used to increase the investment in mechanisms reducing water loss and oxidative stress (thicker cell walls and cuticles, a higher chlorophyll and carotenoid content, higher SOD activity), resulting in more intact thylakoids. As these mechanisms can improve survival under salinity, A. tripolium seems to be a promising cash crop halophyte which can help in desalinizing and reclaiming degraded land
Effects of Salt Stress on Three Ecologically Distinct Plantago Species
Comparative studies on the responses to salt stress of taxonomically related taxa should
help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this
strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P.
coronopus both halophytes and P. major, considered as salt-sensitive since it is never
found in natural saline habitats. Growth inhibition measurements in controlled salt treatments
indicated, however, that P. major is quite resistant to salt stress, although less than
its halophytic congeners. The contents of monovalent ions and specific osmolytes were
determined in plant leaves after four-week salt treatments. Salt-treated plants of the three
taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a
lesser extent in P. major than in the halophytes; the latter species also showed higher ion
contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate
salinity levels, to increase again under high salt conditions, whereas in P. major K+
contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants,
roughly in parallel with increasing salinity, but the relative increments and the absolute values
reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation
of proline in response to high salt concentrations (600 800 mM NaCl) was
observed in the halophytes, but not in P. major. These results indicate that the responses to
salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance
in the genus Plantago are: a higher efficiency in the transport of toxic ions to the
leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions,
and the activation, in response to very high salt concentrations, of proline accumulation and
K+ transport to the leaves of the plants.MAH was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium). AP acknowledges the Erasmus mobility programme for funding her stay in Valencia to carry out her Master Thesis.Al Hassan, M.; Pacurar, AM.; López Gresa, MP.; Donat Torres, MDP.; Llinares Palacios, JV.; Boscaiu Neagu, MT.; Vicente Meana, Ó. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLoS ONE. 11(8):1-21. doi:10.1371/journal.pone.0160236S12111
Salt stress affects mRNA editing in soybean chloroplasts
Abstract Soybean, a crop known by its economic and nutritional importance, has been the subject of several studies that assess the impact and the effective plant responses to abiotic stresses. Salt stress is one of the main environmental stresses and negatively impacts crop growth and yield. In this work, the RNA editing process in the chloroplast of soybean plants was evaluated in response to a salt stress. Bioinformatics approach using sRNA and mRNA libraries were employed to detect specific sites showing differences in editing efficiency. RT-qPCR was used to measure editing efficiency at selected sites. We observed that transcripts of NDHA, NDHB, RPS14 and RPS16 genes presented differences in coverage and editing rates between control and salt-treated libraries. RT-qPCR assays demonstrated an increase in editing efficiency of selected genes. The salt stress enhanced the RNA editing process in transcripts, indicating responses to components of the electron transfer chain, photosystem and translation complexes. These increases can be a response to keep the homeostasis of chloroplast protein functions in response to salt stress
- …