4,399 research outputs found

    Testing the density matrix expansion against ab initio calculations of trapped neutron drops

    Full text link
    Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron drop systems in harmonic traps by comparing to Hartree-Fock (HF) and ab initio no-core full configuration (NCFC) calculations with a model interaction (Minnesota potential). The new DME with exact treatment of Hartree contributions is found to best reproduce HF results and supplementing the functional with fit Skyrme-like contact terms shows systematic improvement toward the full NCFC results.Comment: 10 pages, 5 figure

    Double Beta Decay: Historical Review of 75 Years of Research

    Full text link
    Main achievements during 75 years of research on double beta decay have been reviewed. The existing experimental data have been presented and the capabilities of the next-generation detectors have been demonstrated.Comment: 25 pages, typos adde

    Error analysis of nuclear mass fits

    Full text link
    We discuss the least-square and linear-regression methods, which are relevant for a reliable determination of good nuclear-mass-model parameter sets and their errors. In this perspective, we define exact and inaccurate models and point out differences in using the standard error analyses for them. As an illustration, we use simple analytic models for nuclear binding energies and study the validity and errors of models' parameters, and uncertainties of its mass predictions. In particular, we show explicitly the influence of mass-number dependent weights on uncertainties of liquid-drop global parameters.Comment: 10 RevTeX pages, 9 figures, submitted to Physical Review

    The nuclear energy density functional formalism

    Full text link
    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a {\it Hamiltonian-based} picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g,g]E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a {\it mathematically} meaningful fashion even if E[g,g]E[g',g] does {\it not} derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making {\it any} reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a {\it physical} standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor

    Precision Mass Measurements beyond 132^{132}Sn: Anomalous behaviour of odd-even staggering of binding energies

    Full text link
    Atomic masses of the neutron-rich isotopes 121128^{121-128}Cd, 129,131^{129,131}In, 130135^{130-135}Sn, 131136^{131-136}Sb, and 132140^{132-140}Te have been measured with high precision (10 ppb) using the Penning trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei 135^{135}Sn, 136^{136}Sb, and 139,140^{139,140}Te were measured for the first time. The data reveals a strong NN=82 shell gap at ZZ=50 but indicates the importance of correlations for Z>50Z>50. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across NN=82 for Sn, with the ZZ-dependence that is unexplainable by the current theoretical models.Comment: 4 Pages, 5 figures. Revised version which focuses on odd-even staggerin

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Conceptual Framework for a Data Model to Support Asset Management Decision-Making Process

    Get PDF
    Part 4: Product and Asset Life Cycle Management in Smart Factories of Industry 4.0International audienceInformation and data management is nowadays a central issue to support the Asset Management (AM) decision-making process. Manufacturing companies have to take different decisions along the asset lifecycle and at different organisational levels, and, to this end, they require proper information and data management. In the literature, besides the crucial role played by information and data, there is evidence of existing gaps, especially related to information management and integration, and transformation of data into useful information. Thus, a conceptual framework is proposed to guide the definition of a data model to fulfil the previously identified gap. Generally, the framework aims at contributing to the improvement of the integration of information along the AM decision-making process. Specifically, it is intended to be aligned with the AM theory and, in particular, its fundamentals defined in the scientific literature and the ISO 5500x body of standards. Overall, thanks to the improvement of the information management and integration along with the AM decision-making, the expectation is to be capable of achieving more value-oriented decisions for the asset lifecycle
    corecore