118 research outputs found
A quantitative comparison of dispersed spore/pollen and plant megafossil assemblages from a Middle Jurassic plant bed from Yorkshire, UK
Detailed quantitative data has previously been collected from plant megafossil assemblages from a Middle Jurassic (Aalenian) plant bed from Hasty Bank, North Yorkshire, UK. We conducted a similar analysis of palynological dispersed sporomorph (spore and pollen) assemblages collected from the same section using the same sampling regime: 67 sporomorph taxa were recorded from 50 samples taken at 10 cm intervals through the plant bed. Basic palynofacies analysis was also undertaken on each sample. Both dispersed sporomorph and plant megafossil assemblages display consistent changes in composition, diversity (richness), and abundance through time. However, the dispersed sporomorph and plant megafossil records provide conflicting evidence for the nature of parent vegetation. Specifically, conifers and ferns are underrepresented in plant megafossil assemblages, bryophytes and lycopsids are represented only in sporomorph assemblages, and sphenophytes, pteridosperms, Caytoniales, Cycadales, Ginkgoales and Bennettitales are comparatively underrepresented in sporomorph assemblages. Combined multivariate analysis (correspondence analysis and nonmetric multidimensional scaling) of sporomorph occurrence/abundance data demonstrates that temporal variation in sporomorph assemblages is the result of depositional change through the plant bed. The reproductive strategies of parent plants are considered to be a principal factor in shaping many of the major abundance and diversity irregularities between dispersed sporomorph and plant megafossil data sets that seemingly reflects different parent vegetation. Preferential occurrence/preservation of sporomorphs and equivalent parent plants is a consequence of a complex array of biological, ecological, geographical, taphonomic, and depositional factors that act inconsistently between and within fossil assemblages, which results in notable discrepancies between data sets
Preface
AimThis was a one-year follow-up of families referred to support services after the parents visited the emergency department due to intimate partner violence, substance abuse or a suicide attempt. Its aim was to evaluate the well-being of any children. MethodsData on families identified a year earlier by the Amsterdam protocol were gathered from child protective services and parent and child self-reports in two Dutch regions from 2012-2015. ResultsWe included 399 children (52%) boys with a median age of eight years (range 1-18) in the study using child protective services data. Of the 101 families who participated in the first measurement, 67 responded one year after the parent's emergency department visit. The results showed that 20% of the children had no or minor problems, voluntary support services were involved in 60% of cases and child protective services were involved in 20%. Compared to their first assessment a year earlier, the children's psychosocial problems had not increased, but this could have been an underestimation due to selective responses. ConclusionThe Amsterdam protocol was valuable in referring families to voluntary support services, but given the ongoing problems in some families, professionals need to carefully monitor whether support services are sufficiently effectiv
Jurassic sedimentation in the Cleveland Basin : a review
This review combines two Presidential Addresses (2005, 2006) and aims to provides an up-to-date overview of the stratigraphy and sedimentation of the Jurassic sequence of the Cleveland Basin (Yorkshire), including poorly known data from the western outcrop. These fascinating rocks have been the focus of geological research since the 18th Century and have had a profound influence on the development of the geological sciences. Throughout the 20th Century, the excellent coastal exposures have acted as a magnet for palaeontologists, stratigraphers, sedimentologists and geochemists, as a natural geological laboratory, and in recent decades, the coastal exposures received increased scientific interest as a result of their analogy with hydrocarbon source and reservoir rocks in the North Sea. Designation of the international Global Stratotype Section and Point (GSSP) for the Sinemurian–Pliensbachian stage boundary in Robin Hood's Bay, the establishment of the Dinosaur Coast, and development of the Rotunda Museum in Scarborough have all given the regional geology additional importance.
The Lias Group (Hettangian–Toarcian age; 199.6–175.6 Ma), exposed in the well known coastal sections, is illustrated by the fully cored Felixkirk Borehole, located at the western margin of the outcrop, and is one of the best examples of shallow marine sedimentation in an epeiric shelf-sea setting. It comprises two large-scale, upward coarsening cycles, namely the Redcar Mudstone to Staithes Sandstone cycle, followed by the Cleveland Ironstone to Blea Wyke Sandstone cycle. Within this broad pattern, smaller scale transgressive–regressive cycles are described from stratigraphically expanded and reduced successions. Detailed ammonite biostratigraphy provides a finely calibrated temporal framework to study the variations in sedimentation, which include storm-generated limestones and sandstones (‘tempestites’) interbedded with mudstone deposited during fair-weather periods. Hemipelagic mud, occasionally organic-rich, reflects deeper-water anoxic events that may indicate a response to global climate change.
In cores, the tempestite beds (Hettangian–Sinemurian) are characterized by sharp bases that, at outcrop, are often masked by downward penetrating burrows. Cyclicity on a centimetre scale in the overlying Pliensbachian ‘Banded Shales’ may be the result of orbitally induced, climatic cycles. Gradational upward coarsening to the Staithes Sandstone Formation marks a transition to sand-rich tempestite deposits, characterized by low angle and swaley cross-lamination, interbedded with sand-starved units (striped siltstones). The sands were probably deposited from sediment-laden, storm-surge and ebb currents in inner- and mid-shelf settings; the sandy substrate was, at some levels, extensively bioturbated by deposit feeding organisms that produced a spectacular range of trace fossil assemblages characteristic of shoreface, inner-, mid-, and outer-shelf settings. Intrabasinal tectonics was a controlling factor during deposition of both the Staithes Sandstone and the overlying Cleveland Ironstone (Late Pliensbachian). The influx of sand is attributed to hinterland uplift and increased sediment flux. More marked intraformational uplift during deposition of the Cleveland Ironstone is manifested in a much attenuated succession in the west of the basin (Felixkirk); southwards, towards the Market Weighton High, the Pecten/Main Seam of the ironstone oversteps unconformably onto progressively older beds to rest on the lower part of the Redcar Mudstone Formation. Ironstone, in the form of berthierine ooids and sideritic mud, was deposited during 5–6 cycles (in coastal exposures) of high sea-level stands that cut off siliciclastic influx from the low-gradient hinterland; regressive, upward-shoaling intervals are marked by interbedded, bioturbated siltstone and fine-grained sandstone.
The Toarcian succession (Whitby Mudstone and Blea Wyke Sandstone formations) continues the second upward coarsening cycle in response to increased subsidence, rising sea-level, and an influx of siliciclastic sand. Oxygenated, open marine mud was deposited during the initial deepening phase, followed by bituminous mud, attributed to ocean-water stratification and the establishment of anoxic bottom conditions; in the west of the basin an upward shoaling sequence suggests that water depths were not as great. Recent research on the geochemistry and stable isotope signatures across this early Toarcian interval indicates a widespread, global anoxic event, possibly attributed to the release of methane hydrate on the ocean floor. The Alum Shale Member represents increasingly oxygenated bottom conditions and an upward coarsening motif with passage to the Blea Wyke Sandstone Formation, which is preserved only in the Peak Trough, an actively subsiding graben. Basin uplift accompanied by gentle folding in late Toarcian to Aalenian times removed much of the late Toarcian succession so that the Middle Jurassic Dogger Formation (Aalenian), a complex, condensed, shallow water unit rests unconformably on beds as low as the Alum Shale over much of the basin.
Deep boreholes and revision mapping by the British Geological Survey (BGS) in the west of the outcrop have allowed a fuller, basin-wide synthesis of the palaeoenvironments and the influence of intra-Jurassic tectonics during Mid- to Late Jurassic times. During Mid-Jurassic times the low-lying, paralic coastal plain, typified by braided and meandering fluvial systems and lacustrine deposits was invaded by marine incursions from the south and east. Each transgressive event was different in its geographical penetration across the coastal plain, resulting in varied lithofacies and palaeoenvironments including ooidal ironstone and lime mud (Eller Beck Formation), peloid and ooid carbonate shoals (Lebberston Member), and tidal sand bars, pelloidal limestones and nearshore marine muds (Scarborough Formation). Trace fossils, including dinosaur footprints, and macro-plant fossils tell us much about the palaeoenvironments on the coastal plain, during this time interval (175.6–164.7 Ma) that was characterized by a warm, seasonal climate.
The basin wide transgression and marked global sea-level rise represented by the Cornbrash Formation, marks deposition in a shallow marine environment during the Callovian, followed by sand (Osgodby Formation) and deeper water muds (Oxford Clay Formation) that spread northwards from the East Midlands over the Market Weighton High during the Oxfordian. Subsequent shallowing of the basin resulted in the establishment of a carbonate/siliciclastic platform typified by ooidal shoals, coral patch reefs and sponge spicule-rich marine sands (Corallian Group). Their complex sedimentation pattern was influenced by local infra-Oxfordian tectonics related to the Howardian–Flamborough Fault Belt. Although the Ampthill Clay and Kimmeridge Clay formations, the latter representing the most important regional hydrocarbon source rock, are not well-exposed, recent boreholes in the Cleveland Basin have allowed a much better understanding of the hemi-pelagic marine environment (both oxic and anoxic) during this phase of sedimentation which marks a global sea-level rise. Although well-studied by world standards, the Jurassic sediments of the Cleveland Basin continue to throw up surprises and advances in our understanding of the Earth as a dynamic system over a period of c. 30 million years. These studies have directly and indirectly influenced our understanding of the Earth as a system, and have played an important role in educating non-specialists, undergraduates and professional geologists over many decades
Non-Canonicaly Recruited TCRαβCD8αα IELs Recognize Microbial Antigens
In the gut, various subsets of intraepithelial T cells (IELs) respond to self or non-self-antigens derived from the body, diet, commensal and pathogenic microbiota. Dominant subset of IELs in the small intestine are TCRαβCD8αα+ cells, which are derived from immature thymocytes that express self-reactive TCRs. Although most of TCRαβCD8αα+ IELs are thymus-derived, their repertoire adapts to microbial flora. Here, using high throughput TCR sequencing we examined how clonal diversity of TCRαβCD8αα+ IELs changes upon exposure to commensal-derived antigens. We found that fraction of CD8αα+ IELs and CD4+ T cells express identical αβTCRs and this overlap raised parallel to a surge in the diversity of microbial flora. We also found that an opportunistic pathogen (Staphylococcus aureus) isolated from mouse small intestine specifically activated CD8αα+ IELs and CD4+ derived T cell hybridomas suggesting that some of TCRαβCD8αα+ clones with microbial specificities have extrathymic origin. We also report that CD8ααCD4+ IELs and Foxp3CD4+ T cells from the small intestine shared many αβTCRs, regardless whether the later subset was isolated from Foxp3CNS1 sufficient or Foxp3CNS1 deficient mice that lacks peripherally-derived Tregs. Overall, our results imply that repertoire of TCRαβCD8αα+ in small intestine expends in situ in response to changes in microbial flora
A palaeoenvironmental reconstruction of the Middle Jurassic of Sardinia (Italy) based on integrated palaeobotanical, palynological and lithofacies data assessment
During the Jurassic, Sardinia was close to continental Europe. Emerged lands started from a single island forming in time a progressively sinking archipelago. This complex palaeogeographic situation gave origin to a diverse landscape with a variety of habitats. Collection- and literature-based palaeobotanical, palynological and lithofacies studies were carried out on the Genna Selole Formation for palaeoenvironmental interpretations. They evidence a generally warm and humid climate, affected occasionally by drier periods. Several distinct ecosystems can be discerned in this climate, including alluvial fans with braided streams (Laconi-Gadoni lithofacies), paralic swamps and coasts (Nurri-Escalaplano lithofacies), and lagoons and shallow marine environments (Ussassai-Perdasdefogu lithofacies). The non-marine environments were covered by extensive lowland and a reduced coastal and tidally influenced environment. Both the river and the upland/hinterland environments are of limited impact for the reconstruction. The difference between the composition of the palynological and palaeobotanical associations evidence the discrepancies obtained using only one of those proxies. The macroremains reflect the local palaeoenvironments better, although subjected to a transport bias (e.g. missing upland elements and delicate organs), whereas the palynomorphs permit to reconstruct the regional palaeoclimate. Considering that the flora of Sardinia is the southernmost of all Middle Jurassic European floras, this multidisciplinary study increases our understanding of the terrestrial environments during that period of time
Episodic river flooding events revealed by palynological assemblages in Jurassic deposits of the Brent Group, North Sea
Spore and pollen (sporomorph) assemblages from Middle Jurassic marine deposits of the Brent Group in the northern North Sea are investigated to assess temporal and spatial variations in vegetation and depositional processes. Four wells were sampled for palynology from the Penguins Cluster and the Don North East fields through the Rannoch Formation shoreface succession. Hyperpycnite deposits occur throughout, but are concentrated within the lower part of the section. These are expressed by sand-prone beds displaying waxing and waning current motifs, normally graded muddy beds and structureless mudstones. Hyperpycnal/hypopycnal deposits resulting from episodic river flooding represent important sedimentary features as they may be preserved below fair weather wave base in more offshore settings and potentially be the only record of the former presence of a nearby river mouth. The hyperpycnites typically contain abundant Botryoccocus spp., Amorphous Organic Matter (AOM) and hinterland sporomorph taxa with relatively few marine components compared to associated marine shoreface facies. Variations in palynofacies assemblages and Botryococcus spp. abundances indicate frequent river mouth avulsion. Ordination of samples using non-metric multidimensional scaling (NMDS) indicates that shoreface samples of the sampled wells are relatively distinct, but hyperpycnite samples are highly similar regardless of their sampled well. This suggests that depositional processes and spore/pollen sources (i.e. catchment zones) were similar among hyperpycnite events across different wells. Abundant bisaccate pollen, Botryococcus spp. and AOM within interpreted hyperpycnites suggest sediment mixing along the fluvial drainage path during flooding events. The terrestrial signature of hyperpycnite sporomorph assemblages demonstrates that underflows remained coherent as they descended the shoreface profile with little turbulent mixing with ambient marine waters. Sporomorph assemblages display few large changes through time suggesting vegetation on the adjacent coastal plain was relatively static through the studied interval
- …