180 research outputs found
Acceleration of the universe in the Einstein frame of a metric-affine f(R) gravity
We show that inflation and current cosmic acceleration can be generated by a
metric-affine f(R) gravity formulated in the Einstein conformal frame, if the
gravitational Lagrangian L(R) contains both positive and negative powers of the
curvature scalar R. In this frame, we give the equations for the expansion of
the homogeneous and isotropic matter-dominated universe in the case
L(R)=R+{R^3}/{\beta^2}-{\alpha^2}/{3R}, where \alpha and \beta are constants.
We also show that gravitational effects of matter in such a universe at very
late stages of its expansion are weakened by a factor that tends to 3/4, and
the energy density of matter \epsilon scales the same way as in the \Lambda-CDM
model only when \kappa*\epsilon<<\alpha.Comment: 12 pages; published versio
The present universe in the Einstein frame, metric-affine R+1/R gravity
We study the present, flat isotropic universe in 1/R-modified gravity. We use
the Palatini (metric-affine) variational principle and the Einstein
(metric-compatible connected) conformal frame. We show that the energy density
scaling deviates from the usual scaling for nonrelativistic matter, and the
largest deviation occurs in the present epoch. We find that the current
deceleration parameter derived from the apparent matter density parameter is
consistent with observations. There is also a small overlap between the
predicted and observed values for the redshift derivative of the deceleration
parameter. The predicted redshift of the deceleration-to-acceleration
transition agrees with that in the \Lambda-CDM model but it is larger than the
value estimated from SNIa observations.Comment: 11 pages; published versio
The cosmic snap parameter in f(R) gravity
We derive the expression for the snap parameter in f(R) gravity. We use the
Palatini variational principle to obtain the field equations and regard the
Einstein conformal frame as physical. We predict the present-day value of the
snap parameter for the particular case f(R)=R-const/R, which is the simplest
f(R) model explaining the current acceleration of the universe.Comment: 9 pages; published versio
Cosmological perturbations in Palatini modified gravity
Two approaches to the study of cosmological density perturbations in modified
theories of Palatini gravity have recently been discussed. These utilise,
respectively, a generalisation of Birkhoff's theorem and a direct linearization
of the gravitational field equations. In this paper these approaches are
compared and contrasted. The general form of the gravitational lagrangian for
which the two frameworks yield identical results in the long-wavelength limit
is derived. This class of models includes the case where the lagrangian is a
power-law of the Ricci curvature scalar. The evolution of density perturbations
in theories of the type is investigated numerically. It is
found that the results obtained by the two methods are in good agreement on
sufficiently large scales when the values of the parameters (b,c) are
consistent with current observational constraints. However, this agreement
becomes progressively poorer for models that differ significantly from the
standard concordance model and as smaller scales are considered
Interplay in the Selection of Fluoroquinolone Resistance and Bacterial Fitness
Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug
f(R) Gravity and scalar-tensor theory
In the present paper we will investigate the relation between scalar-tensor
theory and theories of gravity. Such studies have been performed in the
past for the metric formalism of gravity; here we will consider mainly
the Palatini formalism, where the metric and the connections are treated as
independent quantities. We will try to investigate under which circumstances
theories of gravity are equivalent to scalar-tensor theory and examine
the implications of this equivalence, when it exists.Comment: minor changes to match published version, references adde
Kerteszia subgenus of Anopheles associated with the Brazilian Atlantic rainforest:current knowledge and future challenges
Background: The Atlantic rainforest ecosystem, where bromeliads are abundant, provides an excellent environment for Kerteszia species, because these anophelines use the axils of those plants as larval habitat. Anopheles (K.) cruzii and Anopheles (K.) bellator are considered the primary vectors of malaria in the Atlantic forest. Although the incidence of malaria has declined in some areas of the Atlantic forest, autochthonous cases are still registered every year, with Anopheles cruzii being considered to be a primary vector of both human and simian Plasmodium. Methods: Recent publications that addressed ecological aspects that are important for understanding the involvement of Kerteszia species in the epidemiology of malaria in the Atlantic rainforest in the Neotropical Region were analysed. Conclusion: The current state of knowledge about Kerteszia species in relation to the Atlantic rainforest ecosystem was discussed. Emphasis was placed on ecological characteristics related to epidemiological aspects of this group of mosquitoes. The main objective was to investigate biological aspects of the species that should be given priority in future studie
- …