127 research outputs found
Recommended from our members
Automated Extraction of Human Settlement Patterns From Historical Topographic Map Series Using Weakly Supervised Convolutional Neural Networks
Information extraction from historical maps represents a persistent challenge due to inferior graphical quality and the large data volume of digital map archives, which can hold thousands of digitized map sheets. Traditional map processing techniques typically rely on manually collected templates of the symbol of interest, and thus are not suitable for large-scale information extraction. In order to digitally preserve such large amounts of valuable retrospective geographic information, high levels of automation are required. Herein, we propose an automated machine-learning based framework to extract human settlement symbols, such as buildings and urban areas from historical topographic maps in the absence of training data, employing contemporary geospatial data as ancillary data to guide the collection of training samples. These samples are then used to train a convolutional neural network for semantic image segmentation, allowing for the extraction of human settlement patterns in an analysis-ready geospatial vector data format. We test our method on United States Geological Survey historical topographic maps published between 1893 and 1954. The results are promising, indicating high degrees of completeness in the extracted settlement features (i.e., recall of up to 0.96, F-measure of up to 0.79) and will guide the next steps to provide a fully automated operational approach for large-scale geographic feature extraction from a variety of historical map series. Moreover, the proposed framework provides a robust approach for the recognition of objects which are small in size, generalizable to many kinds of visual documents.</div
Search reduction in hierarchical distributed problem solving
Knoblock and Korf have determined that abstraction can reduce search at a single agent from exponential to linear complexity (Knoblock 1991; Korf 1987). We extend their results by showing how concurrent problem solving among multiple agents using abstraction can further reduce search to logarithmic complexity. We empirically validate our formal analysis by showing that it correctly predicts performance for the Towers of Hanoi problem (which meets all of the assumptions of the analysis). Furthermore, a powerful form of abstraction for large multiagent systems is to group agents into teams, and teams of agents into larger teams, to form an organizational pyramid. We apply our analysis to such an organization of agents and demonstrate the results in a delivery task domain. Our predictions about abstraction's benefits can also be met in this more realistic domain, even though assumptions made in our analysis are violated. Our analytical results thus hold the promise for explaining in general terms many experimental observations made in specific distributed AI systems, and we demonstrate this ability with examples from prior research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42828/1/10726_2005_Article_BF01384251.pd
Uso de grĆ£os de cereais de inverno na suplementaĆ§Ć£o de ruminantes em sistemas de integraĆ§Ć£o lavoura-pecuĆ”ria (ILP).
Este artigo tem como objetivo abordar a utilizaĆ§Ć£o dos grĆ£os de cereais de inverno, na alimentaĆ§Ć£o animal, bem como as diferentes formas de conservĆ”-los, seja na forma seca, via fenaĆ§Ć£o ou na forma Ćŗmida, via ensilagem
- ā¦