397 research outputs found
Tax evasion and exchange equity: a reference-dependent approach
The standard portfolio model of tax evasion with a public good produces the perverse conclusion that when taxpayers perceive the public good to be under-/overprovided, an increase in the tax rate increases/decreases evasion. The author treats taxpayers as thinking in terms of gains and losses relative to an endogenous reference level, which reflects perceived exchange equity between the value of taxes paid and the value of public goods supplied. With these alternative behavioral assumptions, the author overturns the aforementioned result in a direction consistent with the empirical evidence. The author also finds a role for relative income in determining individual responses to a change in the marginal rate of tax
29-Si NMR and Hidden Order in URu2Si2
We present new 29-Si NMR spectra in URu2Si2 for varying temperature T, and
external field H. On lowering T, the systematics of the low-field lineshape and
width reveal an extra component (lambda) to the linewidth below T_N ~ 17 K not
observed previously. We find that lambda is magnetic-field independent and
dominates the low-field lineshape for all orientations of H with respect to the
tetragonal c axis. The behavior of lambda indicates a direct relationship
between the 29-Si spin and the transition at T_N, but it is inconsistent with a
coupling of the nuclei to static antiferromagnetic order/disorder of the U-spin
magnetization. This leads us to conjecture that lambda is due to a coupling of
29-Si to the system's hidden-order parameter. A possible coupling mechanism
involving charge degrees of freedom and indirect nuclear spin/spin interactions
is proposed. We also propose further experiments to test for the existence of
this coupling mechanism.Comment: 4 pages, 4 figures, submitted to PR
The FLASHForward Facility at DESY
The FLASHForward project at DESY is a pioneering plasma-wakefield
acceleration experiment that aims to produce, in a few centimetres of ionised
hydrogen, beams with energy of order GeV that are of quality sufficient to be
used in a free-electron laser. The plasma wave will be driven by high-current
density electron beams from the FLASH linear accelerator and will explore both
external and internal witness-beam injection techniques. The plasma is created
by ionising a gas in a gas cell with a multi-TW laser system, which can also be
used to provide optical diagnostics of the plasma and electron beams due to the
<30 fs synchronisation between the laser and the driving electron beam. The
operation parameters of the experiment are discussed, as well as the scientific
program.Comment: 19 pages, 9 figure
Dietary trehalose enhances virulence of epidemic Clostridium difficile
Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc
High Field Studies of the Hidden Order Transition in URuSi
We studied in detail the low temperature/high magnetic field phases of
URuSi single crystals with specific heat, magnetocaloric effect,
and magnetoresistance in magnetic fields up to 45 T. Data obtained down to 0.5
K, and extrapolated to T = 0, show a suppression of the hidden order phase at
H(0) = 35.9 0.35 T and the appearance of a new phase for magnetic
fields in excess of H(0) = 36.1 0.35 T observed \textit{only} at
temperatures lower than 6 K. In turn, complete suppression of this high field
state is attained at a critical magnetic field H(0) = 39.7 0.35 T.
No phase transitions are observed above 40 T. We discuss our results in the
context of itinerant vs. localized \textit{f}-electron behavior and consider
the implications for the hidden order phase.Comment: 4 pages, 3 figures Submitted May 10, 2002. Revised Sep 17, 200
Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch
We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matched to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. Its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration
- …