761 research outputs found

    Interdependence of magnetism and superconductivity in the borocarbide TmNi2B2C

    Get PDF
    We have discovered a new antiferromagnetic phase in TmNi2B2C by neutron diffraction. The ordering vector is Q_A = (0.48,0,0) and the phase appears above a critical in-plane magnetic field of 0.9 T. The field was applied in order to test the assumption that the zero-field magnetic structure at Q_F = (0.094,0.094,0) would change into a c-axis ferromagnet if superconductivity were destroyed. We present theoretical calculations which show that two effects are important: A suppression of the ferromagnetic component of the RKKY exchange interaction in the superconducting phase, and a reduction of the superconducting condensation energy due to the periodic modulation of the moments at the wave vector Q_A

    KINETICS AND ELECTROMYOGRAPHY OF THE MARTIAL ARTS HIGH FRONT KICK

    Get PDF
    INTRODUCTION Fast unloaded movements like striking, throwing and kicking are typically performed in a proximo-distal sequence: Initially proximal segments accelerate while distal segments lag behind, then proximal segments deceler- ate while distal segments accelerate. In kicking, for instance, it is observed that the movement starts with forward angular acceleration of the thigh while the shank lags behind. Then the thigh decelerates while simultaneously the shank accelerates and the foot reaches its maximal velocity. This raises two questions: Is the thigh actively decelerated by the glutei and/or hamstring muscles, or passively decelerated by joint reaction forces from the accelerating shank7 Is acceleration of the shank enhanced by the thigh's deceleration? From a kinematic perspective this movement coordination seems disadvantageous, considering that the resulting linear velocity of the foot relative to the ground equals the vector sum of the resulting linear velocity of the knee relative to the ground and the foot relative to the knee. However, from a kinetic perspective it can be argued that thigh deceleration enhances shah acceleration to a degree where toss of knee velocity is more than accounted for in gain of foot velocity. The theory is that the angularly decelerating thigh exerts a knee joint force which causes angular acceleration of the shank, i.e. a %hip-lash" action. To obtain knowledge regarding how these kinds of movements are performed we decided to examine the martial arts high front kick. Similar to previous kicking studies we did so by kinematic measurements but in addition recorded the electrical activity of selected muscles in order to asses their temporal activation during the kick. METHODS Seventeen skilled taekwondo practitioners (14 males. 3 females) volunteered to take part in this study. Each subject performed three high front kicks aiming at a tennis ball suspended from the ceiling and adjusted to chin level. The fastest kick from each subject was selected for further analysis. The subjects were high speed filmed (200 f.p.s.) from their right side while kicking. Contrasting markers on selected anatomical landmarks enabled subsequent automatic digitisation. Displacement data were lowpass filtered with optimal cut-off frequencies (6-1 0 Hz) determined by use of residual analysis/ Jackson Knee method. Velocities and accelerations were derived from the displacement data by finite difference calculation. During kicking the electtomyographic activity (EMG) from five selected leg muscles were measured with surface electrodes. Kinetic data were obtained through inverse dynamics calculation using a two-segment link-segment model of the kicking leg and the movement equations developed by Putnam (1983). These equations enable division of the resulting moment acting on a segment into muscular components and motion de- pendant components arising from movement of adjacent segments. RESULTS Data for the thigh indicated that deceleration was caused by motion dependant moments arising from shank motion and not by active hip extensor muscles. Shank acceleration was caused partly by a knee extensor muscle moment and partly by a motion dependant moment arising from thigh angular velocity. Both thigh and shank kinetics were supported by EMG recordings. CONCLUSION As part of the accelerating moment acting on the shank was due to thigh angular velocity we suggest that the observed thigh deceleration should be considered unwanted but unavoidable due to shank acceleration. This implies that even though knee extensor muscles are important for shank acceleration the hip flexor muscles must not be neglected

    Cross-calibration of the Siemens mMR:easily acquired accurate PET phantom measurements, long-term stability and reproducibility

    Get PDF
    BACKGROUND: We present a quick and easy method to perform quantitatively accurate PET scans of typical water-filled PET plastic shell phantoms on the Siemens Biograph mMR PET/MR system. We perform regular cross-calibrations (Xcal) of our PET systems, including the PET/MR, using a Siemens mCT water phantom. LONG-TERM STABILITY: The mMR calibration stability was evaluated over a 3-year period where 54 cross-calibrations were acquired, showing that the mMR on average underestimated the concentration by 16 %, consistently due to the use of MR-based μ-maps. The mMR produced the narrowest calibration ratio range with the lowest standard deviation, implying it is the most stable of the six systems in the study over a 3-year period. MMR ACCURACY WITH PREDEFINED μ-MAPS: With the latest mMR software version, VB20P, it is possible to utilize predefined phantom μ-maps. We evaluated both the system-integrated, predefined μ-map of the long mMR water phantom and our own user-defined CT-based μ-map of the mCT water phantom, which is used for cross-calibration. For seven scans, which were reconstructed with correctly segmented μ-maps, the mMR produced cross-calibration ratios of 1.00–1.02, well within the acceptance range [0.95–1.05], showing high accuracy. CONCLUSIONS: The mMR is the most stable PET system in this study, and the mean underestimation is no longer an issue with the easily accessible μ-map, which resulted in correct cross-calibration ratios in all seven tests. We will share the user-defined μ-map of the mCT phantom and the protocol with interested mMR users

    Outcomes in elderly Danish citizens admitted with community-acquired pneumonia. Regional differencties, in a public healthcare system

    Get PDF
    SummaryObjectivesTo evaluate regional differences in and risk factors for admission, length of stay, mortality, and readmission for community-acquired pneumonia in elderly Danish patients.MethodsNational registry study on elderly Danish citizens with an acute admission in 2009 owing to community-acquired pneumonia. We studied differences among hospitals in length of stay, in-hospital mortality, mortality within 30 days of discharge, and readmission within 30 days after discharge using Cox regression models with adjustments for age, sex, ventilatory support, and co-morbidity by Charlson's index score.ResultsA total of 11,332 elderly citizens were admitted with community-acquired pneumonia. Mortality during admission and 30-days from discharge were 11.6% and 16.2%, respectively. Readmission rates within 30 days of discharge were 12.3%. There were significantly differences between hospitals in length of stay. A high Charlson index score and advanced age were significantly risk factors for death during admission and within 30 days of discharge. Male sex and high Charlson index score were significant risk factors for readmission. Admission to large bed capacity hospital was a significant risk factor for death and readmission within 30 days of discharge.ConclusionsLength of stay, rate of admission, mortality and readmission in elderly Danish patients with community-acquired pneumonia follows international findings. There are regional differences between hospitals. In depth investigation in regional differences could reveal potential feasible clinical interventions with an improvement of readmission-, mortality rates and cost

    Deficits in Beam-Walking After Neonatal Motor Cortical Lesions are not Spared by Fetal Cortical Transplants in Rats

    Get PDF
    Adult rats that sustained unilateral motor cortical lesions at birth demonstrated deficits in traversing an elevated narrow beam. These deficits, manifested by hindlimb slips off the edge of the beam, were not spared in animals that received fetal cortical transplants into the lesion cavity immediately after lesion placement

    Formation of atomic tritium clusters and condensates

    Get PDF
    We present an extensive study of the static and dynamic properties of systems of spin-polarized tritium atoms. In particular, we calculate the two-body |F,m_F>=|0,0> s-wave scattering length and show that it can be manipulated via a Feshbach resonance at a field strength of about 870G. Such a resonance might be exploited to make and control a Bose-Einstein condensate of tritium in the |0,0> state. It is further shown that the quartet tritium trimer is the only bound hydrogen isotope and that its single vibrational bound state is a Borromean state. The ground state properties of larger spin-polarized tritium clusters are also presented and compared with those of helium clusters.Comment: 5 pages, 3 figure

    Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate

    Full text link
    A central goal in condensed matter and modern atomic physics is the exploration of many-body quantum phases and the universal characteristics of quantum phase transitions in so far as they differ from those established for thermal phase transitions. Compared with condensed-matter systems, atomic gases are more precisely constructed and also provide the unique opportunity to explore quantum dynamics far from equilibrium. Here we identify a second-order quantum phase transition in a gaseous spinor Bose-Einstein condensate, a quantum fluid in which superfluidity and magnetism, both associated with symmetry breaking, are simultaneously realized. 87^{87}Rb spinor condensates were rapidly quenched across this transition to a ferromagnetic state and probed using in-situ magnetization imaging to observe spontaneous symmetry breaking through the formation of spin textures, ferromagnetic domains and domain walls. The observation of topological defects produced by this symmetry breaking, identified as polar-core spin-vortices containing non-zero spin current but no net mass current, represents the first phase-sensitive in-situ detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure
    • …
    corecore