98 research outputs found

    Field-theoretical renormalization group for a flat two-dimensional Fermi surface

    Full text link
    We implement an explicit two-loop calculation of the coupling functions and the self-energy of interacting fermions with a two-dimensional flat Fermi surface in the framework of the field theoretical renormalization group (RG) approach. Throughout the calculation both the Fermi surface and the Fermi velocity are assumed to be fixed and unaffected by interactions. We show that in two dimensions, in a weak coupling regime, there is no significant change in the RG flow compared to the well-known one-loop results available in the literature. However, if we extrapolate the flow to a moderate coupling regime there are interesting new features associated with an anisotropic suppression of the quasiparticle weight Z along the Fermi surface, and the vanishing of the renormalized coupling functions for several choices of the external momenta.Comment: 16 pages and 22 figure

    Possible Magnetic Chirality in Optically Chiral Magnet [Cr(CN)6_6][Mn(SS)-pnH(H2_2O)](H2_2O) Probed by Muon Spin Rotation and Relaxation

    Full text link
    Local magnetic fields in a molecule-based optically chiral magnet [Cr(CN)6_6][Mn(SS)-pnH(H2_2O)](H2_2O) (GN-S) and its enantiomer (GN-R) are studied by means of muon spin rotation and relaxation (muSR). Detailed analysis of muon precession signals under zero field observed below T_c supports the average magnetic structure suggested by neutron powder diffraction. Moreover, comparison of muSR spectra between GN-S and GN-R suggests that they are a pair of complete optical isomers in terms of both crystallographic and magnetic structure. Possibility of magnetic chirality in such a pair is discussed.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Origin of adiabatic and non-adiabatic spin transfer torques in current-driven magnetic domain wall motion

    Full text link
    A consistent theory to describe the correlated dynamics of quantum mechanical itinerant spins and semiclassical local magnetization is given. We consider the itinerant spins as quantum mechanical operators, whereas local moments are considered within classical Lagrangian formalism. By appropriately treating fluctuation space spanned by basis functions, including a zero-mode wave function, we construct coupled equations of motion for the collective coordinate of the center-of-mass motion and the localized zero-mode coordinate perpendicular to the domain wall plane. By solving them, we demonstrate that the correlated dynamics is understood through a hierarchy of two time scales: Boltzmann relaxation time when a non-adiabatic part of the spin-transfer torque appears, and Gilbert damping time when adiabatic part comes up.Comment: 4 pages, 2 figure

    Nonlinear magnetic responses at the phase boundaries around helimagnetic and skyrmion lattice phases in MnSi: Evaluation of robustness of noncollinear spin texture

    Get PDF
    The phase diagram of a cubic chiral magnet MnSi with multiple Dzyaloshinskii-Moriya (DM) vectors as a function of temperature T and dc magnetic field Hdc was investigated using intensity mapping of the odd-harmonic responses of ac magnetization (M1ω andM3ω), and the responses at phase boundaries were evaluated according to a prescription [J. Phys. Soc. Jpn. 84, 104707 (2015)]. By evaluating M3ω/M1ω appearing at phase boundaries, the robustness of noncollinear spin texture in both the helimagnetic (HM) and the skyrmion lattice (SkL) phases of MnSi was discussed. The robustness of vortices-type solitonic texture SkL in MnSi is smaller than those of both the single DM HM and chiral soliton lattice phases of a monoaxial chiral magnet Cr1/3NbS2, and furthermore the robustness of the multiple DM HM phase in MnSi is smaller than that of its SkL. Through magnetic diagnostics over the wide T -Hdc range, we found a new paramagnetic (PM) region with ac magnetic hysteresis, where spin fluctuations have been observed via electrical magnetochiral effect. The anomalies observed in the previous ultrasonic attenuation measurement correspond to the peak positions of out-of-phase M1ω. The appearance of a new PM region occurs at a characteristic magnetic field, above which indeed the SkL phase appears. It has us suppose that the new PM region could be a phase with spin fluctuation like the skyrmion gas phase

    Quantum phase transitions and collapse of the Mott gap in the d=1+ϵd=1+\epsilon dimensional half-filled Hubbard model

    Get PDF
    We study the low-energy asymptotics of the half-filled Hubbard model with a circular Fermi surface in d=1+ϵd=1+\epsilon continuous dimensions, based on the one-loop renormalization-group (RG) method. Peculiarity of the d=1+ϵd=1+\epsilon dimensions is incorporated through the mathematica structure of the elementary particle-partcile (PP) and particle-hole (PH) loops: infrared logarithmic singularity of the PH loop is smeared for ϵ>0\epsilon>0. The RG flows indicate that a quantum phase transition (QPT) from a metallic phase to the Mott insulator phase occurs at a finite on-site Coulomb repulsion UU for ϵ>0\epsilon>0. We also discuss effects of randomness.Comment: 12 pages, 10 eps figure

    Origin for the enhanced copper spin echo decay rate in the pseudogap regime of the multilayer high-T_c cuprates

    Full text link
    We report measurements of the anisotropy of the spin echo decay for the inner layer Cu site of the triple layer cuprate, Hg_0.8Re_0.2Ba_2Ca_2Cu_3O_8 (T_c=126 K) in the pseudogap T regime below T_pg ~ 170 K and the corresponding analysis for their interpretation. As the field alignment is varied, the shape of the decay curve changes from Gaussian (H_0 \parallel c) to single exponential (H_0 \perp c). The latter characterizes the decay caused by the fluctuations of adjacent Cu nuclear spins caused by their interactions with electron spins. The angular dependence of the second moment (T_{2M}^{-2} \equiv ) deduced from the decay curves indicates that T_{2M}^{-2} for H_0 \parallel c, which is identical to T_{2G}^{-2} (T_{2G} is the Gaussian component), is substantially enhanced, as seen in the pseudogap regime of the bilayer systems. Comparison of T_{2M}^{-2} between H_0 \parallel c and H_0 \perp c indicates that this enhancement is caused by electron spin correlations between the inner and the outer CuO_2 layers. These results provide the answer to the long-standing controversy regarding the opposite T dependences of (T_1T)^{-1} and T_{2G}^{-2} in the pseudogap regime of bi- and trilayer systems.Comment: 4 pages, 4 figure

    Signature of the staggered flux state around a superconducting vortex in underdoped cuprates

    Get PDF
    Based on the SU(2) lattice gauge theory formulation of the t-J model, we discuss possible signature of the unit cell doubling associated with the staggered flux (SF) state in the lightly doped spin liquid. Although the SF state appears only dynamically in a uniform d-wave superconducting (SC) state, a topological defect [SU(2) vortex] freezes the SF state inside the vortex core. Consequently, the unit cell doubling shows up in the hopping (χij\chi_{ij}) and pairing (Δij\Delta_{ij}) order parameters of physical electrons. We find that whereas the center in the vortex core is a SF state, as one moves away from the core center, a correlated staggered modulation of χij\chi_{ij} and Δij\Delta_{ij} becomes predominant. We predict that over the region outside the core and inside the internal gauge field penetration depth around a vortex center, the local density-of-states (LDOS) exhibits staggered peak-dip (SPD) structure inside the V-shaped profile when measured on the bonds. The SPD structure has its direct origin in the unit cell doubling associated with the SF core and the robust topological texture, which has little to do with the symmetry of the d-wave order parameter. Therefore the structure may survive the tunneling matrix element effects and easily be detected by STM experiment.Comment: 27 pages, 14 figures in GIF format, typo correcte

    Staggered local density-of-states around the vortex in underdoped cuprates

    Get PDF
    We have studied a single vortex with the staggered flux (SF) core based on the SU(2) slave-boson theory of high TcT_c superconductors. We find that whereas the center in the vortex core is a SF state, as one moves away from the core center, a correlated staggered modulation of the hopping amplitude χ\chi and pairing amplitude Δ\Delta becomes predominant. We predict that in this region, the local density-of-states (LDOS) exhibits staggered modulation when measured on the bonds, which may be directly detected by STM experiments.Comment: 4 pages, 3 figure

    Charge Ordering in the One-Dimensional Extended Hubbard Model: Implication to the TMTTF Family of Organic Conductors

    Full text link
    We study the charge ordering (CO) in the one-dimensional (1D) extended Hubbard model at quarter filling where the nearest-neighbor Coulomb repulsion and dimerization in the hopping parameters are included. Using the cluster mean-field approximation to take into account the effect of quantum fluctuations, we determine the CO phase boundary of the model in the parameter space at T=0 K. We thus find that the dimerization suppresses the stability of the CO phase strongly, and in consequence, the realistic parameter values for quasi-1D organic materials such as (TMTTF)2_2PF6_6 are outside the region of CO. We suggest that the long-range Coulomb interaction between the chains should persist to stabilize the CO phase.Comment: 5 pages, 4 eps figures, to appear in 15 Nov. 2001 issue of PR

    Effects of Spin Fluctuations in Quasi-One-Dimensional Organic Superconductors

    Full text link
    We study the electronic states of quasi-one-dimensional organic conductors using the single band Hubbard model at half-filling. We treat the effects of the on-site Coulomb interaction by the fluctuation-exchange (FLEX) method, and calculate the phase diagram and physical properties. The calculated pressure dependence of the Neel temperature coincides well with the experimental one. We also show that a pseudogap is formed in the density of states near the chemical potential and that d-wave superconductivity appears next to the antiferromagnetic state. Moreover the NMR relaxation rate increases on cooling in the low-temperature region.Comment: 4 pages, 5 figures, to apprear in J. Phys. Soc. Jp
    corecore