2,096 research outputs found

    Spin-current absorption by inhomogeneous spin-orbit coupling

    Full text link
    We investigate the spin-current absorption induced by an inhomogeneous spin-orbit coupling due to impurities in metals. We consider the system with spin currents driven by the electric field or the spin accumulation. The resulting diffusive spin currents, including the gradient of the spin-orbit coupling strength, indicate the spin-current absorption at the interface, which is exemplified with experimentally relevant setups.Comment: 13 pages, 5 figure

    Cis-regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo

    Get PDF
    The SM50 gene encodes a minor matrix protein of the sea urchin embryo spicule. We carried out a detailed functional analysis of a cis-regulatory region of this gene, extending 440 bp upstream and 120 bp downstream of the transcription start site, that had been shown earlier to confer accurate skeletogenic expression of an injected expression vector. The distal portion of this fragment contains elements controlling amplitude of expression, while the region from āˆ’200 to +105 contains spatial control elements that position expression accurately in the skeletogenic lineages of the embryo. A systematic mutagenesis analysis of this region revealed four adjacent regulatory elements, viz two copies of a positively acting sequence (element D) that are positioned just upstream of the transcription start site; an indispensable spatial control element (element C) that is positioned downstream of the start site; and further downstream, a second positively acting sequence (element A). We then constructed a series of synthetic expression constructs. These contained oligonucleotides representing normal and mutated versions of elements D, C, and A, in various combinations. We also changed the promoter of the SM50 gene from a TATA-less to a canonical TATA box form, without any effect on function. Perfect spatial regulation was also produced by a final series of constructs that consisted entirely of heterologous enhancers from the CyIIIa gene, the SV40 early promoter, and synthetic D, C, and A elements. We demonstrate that element C exercises the primary spatial control function of the region we analyzed. We term this a ā€˜locatorā€™ element. This differs from conventional ā€˜tissue-specific enhancersā€™ in that while it is essential for expression, it has no transcriptional activity on its own, and it requires other, separable, positive regulatory elements for activity. In the normal configuration these ancillary positive functions are mediated by elements A and D. Only positively acting control elements were observed in the SM50 regulatory domain throughout this analysis

    The Subaru/XMM-Newton Deep Survey (SXDS) -VII. Clustering Segregation with Ultraviolet and Optical Luminosities of Lyman-Break Galaxies at z~3

    Full text link
    We investigate clustering properties of Lyman-break galaxies (LBGs) at z~3 based on deep multi-waveband imaging data from optical to near-infrared wavelengths in the Subaru/XMM-Newton Deep Field. The LBGs are selected by U-V and V-z' colors in one contiguous area of 561 arcmin^2 down to z'=25.5. We study the dependence of the clustering strength on rest-frame UV and optical magnitudes, which can be indicators of star formation rate and stellar mass, respectively. The correlation length is found to be a strong function of both UV and optical magnitudes with brighter galaxies being more clustered than faint ones in both cases. Furthermore, the correlation length is dependent on a combination of UV and optical magnitudes in the sense that galaxies bright in optical magnitude have large correlation lengths irrespective of UV magnitude, while galaxies faint in optical magnitude have correlation lengths decreasing with decreasing UV brightness. These results suggest that galaxies with large stellar masses always belong to massive halos in which they can have various star formation rates, while galaxies with small stellar masses reside in less massive halos only if they have low star formation rates. There appears to be an upper limit to the stellar mass and the star formation rate which is determined by the mass of hosting dark halos.Comment: 16 pages, 15 figures, accepted for publication in Ap

    DRG-targeted helper-dependent adenoviruses mediate selective gene delivery for therapeutic rescue of sensory neuronopathies in mice

    Get PDF
    Dorsal root ganglion (DRG) neuron dysfunction occurs in a variety of sensory neuronopathies for which there are currently no satisfactory treatments. Here we describe the development of a strategy to target therapeutic genes to DRG neurons for the treatment of these disorders. We genetically modified an adenovirus (Ad) to generate a helper virus (HV) that was detargeted for native adenoviral tropism and contained DRG homing peptides in the adenoviral capsid fiber protein; we used this HV to generate DRG-targeted helper-dependent Ad (HDAd). In mice, intrathecal injection of this HDAd produced a 100-fold higher transduction of DRG neurons and a markedly attenuated inflammatory response compared with unmodified HDAd. We also injected HDAd encoding the Ī² subunit of Ī²-hexosaminidase (Hexb) into Hexb-deficient mice, a model of the neuronopathy Sandhoff disease. Delivery of the DRG-targeted HDAd reinstated neuron-specific Hexb production, reversed gangliosidosis, and ameliorated peripheral sensory dysfunction. The development of DRG neuronā€“targeted HDAd with proven efficacy in a preclinical model may have implications for the treatment of sensory neuronopathies of diverse etiologies

    Diffusive versus local spin currents in dynamic spin pumping systems

    Full text link
    Using microscopic theory, we investigate the properties of a spin current driven by magnetization dynamics. In the limit of smooth magnetization texture, the dominant spin current induced by the spin pumping effect is shown to be the diffusive spin current, i.e., the one arising from only a diffusion associated with spin accumulation. That is to say, there is no effective field that locally drives the spin current. We also investigate the conversion mechanism of the pumped spin current into a charge current by spin-orbit interactions, specifically the inverse spin Hall effect. We show that the spin-charge conversion does not always occur and that it depends strongly on the type of spin-orbit interaction. In a Rashba spin-orbit system, the local part of the charge current is proportional to the spin relaxation torque, and the local spin current, which does not arise from the spin accumulation, does not play any role in the conversion. In contrast, the diffusive spin current contributes to the diffusive charge current. Alternatively, for spin-orbit interactions arising from random impurities, the local charge current is proportional to the local spin current that constitutes only a small fraction of the total spin current. Clearly, the dominant spin current (diffusive spin current) is not converted into a charge current. Therefore, the nature of the spin current is fundamentally different depending on its origin and thus the spin transport and the spin-charge conversion behavior need to be discussed together along with spin current generation

    Can Geometric Test Probe the Cosmic Equation of State ?

    Get PDF
    Feasibility of the geometric test as a probe of the cosmic equation of state of the dark energy is discussed assuming the future 2dF QSO sample. We examine sensitivity of the QSO two-point correlation functions, which are theoretically computed incorporating the light-cone effect and the redshift distortions, as well as the nonlinear effect, to a bias model whose evolution is phenomenologically parameterized. It is shown that the correlation functions are sensitive on a mean amplitude of the bias and not to the speed of the redshift evolution. We will also demonstrate that an optimistic geometric test could suffer from confusion that a signal from the cosmological model can be confused with that from a stochastic character of the bias.Comment: 11 pages, including 3 figures, accepted for publication in ApJ

    A note on string solutions in AdS_3

    Full text link
    We systematically search for classical open string solutions in AdS_3 within the general class expressed by elliptic functions (i.e., the genus-one finite-gap solutions). By explicitly solving the reality and Virasoro conditions, we give a classification of the allowed solutions. When the elliptic modulus degenerates, we find a class of solutions with six null boundaries, among which two pairs are collinear. By adding the S^1 sector, we also find four-cusp solutions with null boundaries expressed by the elliptic functions.Comment: 17 pages, 1 figure; (v2) added 1 figure and discussion on solutions with 6 null boundaries; (v3) corrected equation numbers; (v4) added comment

    On the contribution of twist-3 multi-gluon correlation functions to single transverse-spin asymmetry in SIDIS

    Full text link
    We study the single spin asymmetry (SSA) induced by purely gluonic correlation inside a nucleon, in particular, by the three-gluon correlation functions in the transversely polarized nucleon, pā†‘p^\uparrow. This contribution is embodied as a twist-3 mechanism in the collinear factorization framework and controls the SSA to be observed in the DD-meson production with large transverse-momentum in semi-inclusive DIS (SIDIS), epā†‘ā†’eDXep^\uparrow \rightarrow eDX. We define the relevant three-gluon correlation functions in the nucleon, and determine their complete set at the twsit-3 level taking into account symmetry constraints in QCD. We derive the single-spin-dependent cross section for the DD-meson production in SIDIS, taking into account all the relevant contributions at the twist-3 level. The result is obtained in a manifestly gauge-invariant form as the factorization formula in terms of the three-gluon correlation functions and reveals the five independent structures with respect to the dependence on the azimuthal angle for the produced DD meson. We also demonstrate the remarkable relation between the twist-3 single-spin-dependent cross section and twist-2 cross sections for the DD-meson production, as a manifestation of universal structure behind the SSA in a variety of hard processes.Comment: 8 pages, 2 figures. To appear in the proceedings of the 19th International Spin Physics Symposium (SPIN2010), Juelich, Germany, Sept.27 - Oct.2, 201

    On the Quantum Invariant for the Brieskorn Homology Spheres

    Full text link
    We study an exact asymptotic behavior of the Witten-Reshetikhin-Turaev invariant for the Brieskorn homology spheres Ī£(p1,p2,p3)\Sigma(p_1,p_2,p_3) by use of properties of the modular form following a method proposed by Lawrence and Zagier. Key observation is that the invariant coincides with a limiting value of the Eichler integral of the modular form with weight 3/2. We show that the Casson invariant is related to the number of the Eichler integrals which do not vanish in a limit Ļ„ā†’NāˆˆZ\tau\to N \in \mathbb{Z}. Correspondingly there is a one-to-one correspondence between the non-vanishing Eichler integrals and the irreducible representation of the fundamental group, and the Chern-Simons invariant is given from the Eichler integral in this limit. It is also shown that the Ohtsuki invariant follows from a nearly modular property of the Eichler integral, and we give an explicit form in terms of the L-function.Comment: 26 pages, 2 figure

    q-series and L-functions related to half-derivatives of the Andrews--Gordon identity

    Full text link
    Studied is a generalization of Zagier's q-series identity. We introduce a generating function of L-functions at non-positive integers, which is regarded as a half-differential of the Andrews--Gordon q-series. When q is a root of unity, the generating function coincides with the quantum invariant for the torus knot.Comment: 21 pages, related papers can be found from http://gogh.phys.s.u-tokyo.ac.jp/~hikami
    • ā€¦
    corecore